Application of Monte-Carlo Simulation Towards a Better Understanding of Bayes’ Theorem in Engineering Education
Main Article Content
Abstract
Bayes' Theorem (BT) is treated in probability theory and statistics. The BT shows how to change the probabilities a priori in view of new evidence, to obtain probabilities a posteriori. With the Bayesian interpretation of probability, the BT is expressed as the probability of an event (or the degree of belief in the occurrence of an event) should be changed, after considering evidence about the occurrence of that event. Bayesian inference is fundamental to Bayesian statistics. An example of practical application of this theorem in Health Systems is to consider the existence of false positives and false negatives in diagnoses. At the Academy, the theme of BT is exposed almost exclusively in its analytical form. With this article, the authors intend to contribute to clarify the logic behind this theorem, and get students better understanding of its important fields of application, using three methods: the classic analytical (Bayesian inference), the frequentist (frequency inference) and the numerical simulation of Monte-Carlo. Thus, it intends to explain BT on a practical and friendly way that provides understanding to students avoiding memorizing the formulas. We provide a spreadsheet that is accessible to any professor. Moreover, we highlight the methodology could be extended to other topics.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors grant the journal the rights to provide the article in all forms and media so the article can be used on the latest technology even after publication and ensure its long-term preservation.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).