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Abstract 
Silently asymptomatic, PCa is usually diagnosed with Digital Rectal Examination 
(DRE) and Prostate Specific Antigen (PSA) levels. Since the first treatment of an 
advanced prostatic malignancy with X-rays by Imbert and Imbert in 1904, External 
Beam Radiation Therapy (EBRT) is now a curative option for localised and locally 
advanced disease and a palliative option for the metastatic low-volume disease. 
Even with the introduction of computers in EBRT and better imaging techniques, 
volume delineation is still a very time-consuming task relying on manual or semi-
automatic segmentation techniques. On the other hand, the U-Net architecture was 
specially designed for medical image segmentation presenting promising results. 
This literature review gathers work using U-Net architectures for PCa segmentation 
in an EBRT context. Following the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) standards, we outline methods, techniques and 
obtained outcomes as a potential foundation for an automated segmentation 
framework for PCa.  
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1. Introduction 
In 1853, John Adams, a surgeon at the London Hospital, diagnosed a cirrhosis of the prostate 
gland as an orphan disease, the first described case of Prostate Cancer (PCa). In 2020, it was 
responsible for 7.3% of all cancer deaths in men and was the second most frequent 
malignancy. Silently asymptomatic in an early stage, PCa is usually diagnosed by Digital Rectal 
Examination (DRE) and Prostate Specific Antigen (PSA) blood test. The prostate gland is about 
the size of a walnut, located in the pelvis surrounding the prostatic urethra and below the 
bladder. Usually, PCa originates from the peripheral zone of the prostate, adjacent to the 
rectum (Singh and Bolla 2019).Error! Reference source not found.Error! Reference source not 
found.Error! Reference source not found. 
The typical PCa patient in the 1940's was a man in his seventies diagnosed with bone or soft 
tissue metastases. Such a poorly differentiated lesion was a death sentence. The first effective 
systematic treatment for any cancer was firstly proposed by Charles Huggins. He found that 
metastatic PCa responded well to androgen-ablation therapy (Denmeade and Isaacs 2002). 
Since then, cancer treatment techniques have evolved tremendously and so have diagnosing, 
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staging and grading PCa. Treatment options have therefore become more diverse and 
adjusted according to the aggressiveness and prognosis of PCa. Current guidelines suggest 
External Beam Radiotherapy (EBRT) as a curative option for localised and locally advanced 
disease and as a palliative option for metastatic low-volume disease (Parker et al. 2020). 
In the EBRT workflow, patients usually do a Computed Tomography (CT) scan providing the 
anatomical basics for treatment planning and attenuation coefficients for dose estimations. 
In this stage, experts define tumour and tissue-related volumes aided by Magnetic Resonance 
Imaging (MRI), which presents better soft-tissue contrast. Manual volume delineation is 
definitively a time consuming and error-prone task. Although performed by highly trained 
medical experts, there is always the issue of inter and intra-observer variability. 
EBRT Systems do offer some automated contouring solutions. Most of them are ATLAS based 
- a library of images, usually online, with multiple delineated organs of different sizes and 
shapes available to the EBRT system. These contours are then registered (rigid or elastic) to 
the patient's CT or MRI images but usually require manual corrections. EBRT systems also 
provide tools for manual segmentation along with semi-automatic methods. These can be 
isodensity threshold or region growing after a manually placed seed point. Besides, it is 
possible to propagate the contours to other slices in the volume. The delineated volumes will 
be the base for radiation dose calculations and optimizations. While the goal is to maximise 
the therapeutic dose to the Clinical Target Volume (CTV), radiation dose to Organs At Risk 
(OARs) must be kept to a minimum. 
In a recent study, Zabel et al. (2021) compared the impact of deep learning and ATLAS based 
segmentation methods with the traditional manual segmentation of the bladder and rectum. 
The initial contours are obtained faster with an ATLAS based method but the editing time is 
much higher. Overall, ATLAS segmentation methods were consistently slower than manual 
and deep learning. Deep learning methods provided editing times similar to manual while 
obtaining initial contours much faster (Zabel et al. 2021). The lack of an automatic contouring 
solution in a clinical EBRT context is a major constraint increasing the time needed to 
efficiently plan a treatment. With the good results obtained by the U-Net for medical image 
segmentation, this work intends to provide a revision of U-Net based architectures for PCa 
automated segmentation in an EBRT context, enhancing the used methodologies and results. 
To the best of our knowledge, it is the first literature review focusing on the combination of 
U-Net architectures and PCa. 
Following this introductory section, a brief review of the found U-Net architectures is 
performed. Section 3 presents the methodology and exclusion criteria following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards. In Section 4, 
the results were grouped considering the following segmentation pipeline: data 
augmentation, preprocessing techniques, training parameters and finally evaluation metrics. 
For each, a brief discussion is performed and a summary of the used methods is presented. 
Finally, Section 5 presents the main conclusions withdrawn and the final remarks. 

2. Background 
In 1981, David Hubel, Torsten Wiesel and Roger Sperry won the Nobel Prize for Physiology or 
Medicine for their work in visual neuroscience (Hubel and Wiesel 2012). They established the 
fundamental understanding of how human neurons extract information along the visual 
pathway to encode an image. With this in mind, Fukushima and Miyake (1982) created the 
first artificial neural network mimicking humans' simple and complex cells. In 1989, LeCun et 
al. (1989) implemented the first modern application of convolutional neural networks. 
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Specially designed for medical image segmentation, Ronneberger, Fischer, and Brox (2015) 
won the ISBI 2012 EM segmentation challenge. The proposed architecture follows an encoder-
decoder cascade structure with a U-shape. Since then it has been widely used in research 
especially concerning organ segmentation in cancer patients. One of the main advantages of 
the U-Net is that it is capable of outputting highly detailed segmentation maps with few 
images and much faster to train than other models since the learning is context-based 
(Siddique et al. 2021). In this chapter, we present the core concepts of the main variations in 
the U-Net architecture found in this review. 
2.1. Base U-Net 
The base U-Net, as proposed by Ronneberger, Fischer, e Brox 2015, follows an encoder-
decoder cascade structure with a U-shape as illustrated in Figure 1, allowing fast and precise 
image segmentation. 

 
Figure 1: Schematic diagram of the U-Net architecture. 

The contracting path consists of the successive application of double 3x3 convolution blocks, 
each followed by a Rectified Linear Unit (ReLU). Connecting the blocks is a 2x2 max-pooling 
operation with stride 2, and the number of feature extraction channels is doubled. The level 
of extracted features increases as the image goes deeper into the net. For example, texture 
and edges are extracted in the initial layers, while shape and categories are extracted much 
deeper. 
The expansive path is very similar and composed of double convolution blocks. The connection 
between these blocks is now assured by a 2x2 up-convolution (halving the number of 
channels). At the same level of depth, the output of each convolution block from the 
contracting path (encoding arm) is cropped (to assure that sizes match) and concatenated 
with the corresponding output in the expansive path (decoding arm). These skip connections 
bring spatial information to a ready to use pixel-level segmentation output. 
Attempting to improve performance, researchers have stacked multiple U-Net architectures. 
However, this raises issues of complexity and exploding gradients. In a novel configuration, 
Qin et al. (2020) introduced a two-level nested U-Net structure with specially designed 
residual blocks (U2-Net). This setup allows the network to go deeper, efficiently maintaining 
high-resolution feature maps (Qin et al. 2020). 
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2.2. D U-Net 
Another downside of the U-Net is that it only allows a 2D input. In medical imaging, most data 
is volumetric, usually with anisotropic spacing. The 3D U-Net is simply an extension of the base 
U-Net where every convolution and pooling operation accepts a three-dimensional input. 
With this architecture, training becomes faster and with sparse labelled pixels (Siddique et al. 
2021). A point worth mentioning is that this configuration requires the volume to be isotropic 
(Çiçek et al. 2016), which is usually not the case with CT or MRI. 
A particular 3D U-net variation is the V-Net, introduced by Milletari, Navab, and Ahmadi 
(2016). The V-Net presents a customised Dice Loss layer that avoids re-weighting and, with a 
stage split configuration, learns residuals, improving results and convergence.  
2.3. Adversarial U-Net 
Let us imagine two networks competing against each other to improve the outcome. That is 
the principle behind Generative Adversarial Networks (GAN). One of the networks, the 
discriminator, acts as a lie detector. It receives the output of the other network, the generator, 
and classifies it as a real or fake image. The generator's goal is to produce images capable of 
deceiving the discriminator. Both gradient functions of the networks are connected. The 
generator adjusts its weight according to the response of the discriminator and adds random 
noise to produce a new image. The discriminator seeks to minimise its error rate and the 
generator to maximise the error rate of the discriminator. The battle ends when the 
discriminator can no longer distinguish fake from real images (Goodfellow et al. 2014). 
Applying this strategy to a U-Net requires the imposition of some conditions, restricting the 
band of synthetic images produced. The generator does not add noise but instead transforms 
the images mimicking human manual transformations (Siddique et al. 2021). 
2.4. Attention U-Net 
The Attention U-Net ignores unnecessary areas by placing an attention gate at the end of each 
skip connection (same depth level concatenation between encoding and decoding paths). 
Before the concatenation, the attention gate selects the more relevant features by filtering 
the neuron activations in the forward and backward passes. The Attention U-Net avoids the 
computational complexity by applying linear transformations without spatial support. 
Besides, it is deeply supervised to allow semantic discrimination of feature maps (Oktay et al. 
2018). Increasing the ability of the U-Net to focus on more relevant features allows for 
localised classification and draws attention to the segmentation of different objects (Siddique 
et al. 2021). 
Attention is commonly multiplicative or additive. While matrix multiplication provides faster 
and more memory efficient computations, additive attention provides the best results. 
Training the network is slightly more complex. The aggregation of feature maps at different 
scales affects learning and performance. A better approach is to train at each scale separately 
and then fine-tune (Schlemper et al. 2019). 

3. Methodology 
The research community has been highly engaged in studying and improving the U-Net 
architecture for specific use cases. In a quick search in PubMed with the keyword U-Net, we 
found 1894 results from 2015. On 2021 alone, we found 938 papers. If we narrow the search 
by adding the keyword Radiotherapy, we obtain only 113 results. Although growing, the need 
for automated segmentation solutions for EBRT urges to settle. This review intends to provide 
the baseline segmentation steps for a prostate cancer evaluation framework. This Section 
provides a systematic review of U-Net architectures used for prostate and OARs 
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segmentation, focusing on work using clinically confirmed PCa patients. Following the PRISMA 
standards, this review includes published works from 2018 onwards. 
We carried this review in Scopus, PubMed (NIM), and ScienceDirect with the following search 
terms: “Prostate” And “Segmentation” And “U-Net” within the article title, abstract and 
keywords in February of 2022. A widely used metric for segmentation quality is the Dice 
Similarity Coefficient (DSC). For comparison purposes, we included DSC also as a search term. 
The search outputted 318 results. We removed 49 duplicate entries and carefully analysed the 
title and abstract of the remaining 268 unique records. Some were not PCa related. Others 
included ultrasound or microscope images and were excluded (219). From the 49 articles 
sought for retrieval, we did not have access to 13 of them, and one did not use a U-Net, leaving 
35 eligible for this review. After a thorough reading of the full article, we ended up excluding 
7 because they aimed at classification issues, 5 concerning the segmentation of prostate 
zones, 3 for dose optimization in EBRT planning and 4 did not specify DSC as an evaluation 
metric. Figure 2 shows the PRISMA flow diagram, illustrating the selection steps. 

 
Figure 2: PRISMA Flow Diagram 

Most of the work reviewed is based on MRI (10), while the remaining 6 are CT based. In EBRT 
planning for PCa, those are the preferred imaging modalities. CT provides anatomical 
background and linear attenuation coefficients for dose estimations and MRI provides soft-
tissue contrast for volume delineation. A segmentation framework usually follows a pipeline. 
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The review process focused on preprocessing methods, augmentation techniques, class 
balance, training parameters, advantages and limitations of each study. Section 4 presents the 
results structured following this pipeline to enlighten which methods to use in each step. The 
main OARs for PCa are the bladder and the rectum. Although not the ultimate purpose, we 
also retrieved the DSC for those organs, if attempted by the authors. A multiclass strategy is 
also interesting since it mimics the human holistic volume delineation.  

4. Results and Discussion 
In all of the reviewed papers, authors attempted segmentation using a U-Net. For some, it was 
the basis for a fine-tuned network, but for others, it was a comparison baseline. Most of the 
datasets used are private. Chen et al. (2019) and Khan et al. (2020) used exclusively public 
images. In spite of this, 11 of them used external datasets for validation and testing purposes. 
The most used one was the Prostate MR Image Segmentation 2012 (PROMISE12) (Litjens et 
al. 2014) from the MICCAI Grand Challenge. As for data dimensionality, the reviewed articles 
are evenly split, with 8 using 2D and another 8 using 3D. Figure 3 shows example images from 
the public PROMISE12 dataset. 

 
Figure 3: PROMISE12 (MRI) (Litjens et al. 2014). In green: the prostate. 

The smallest dataset was from Khan et al. (2020) with 11 patients and the largest from Almeida 
et al. (2022) with 2226 patients. Tian et al. (2018) showed that fine-tuning only the last three 
layers of a model may be sufficient to improve the segmentation accuracy of a U-Net and V-
Net. Sultana et al. (2020) included GAN in their architecture and Cem Birbiri et al. (2020) 
introduced a custom conditional GAN (cGAN), an extended version of the GAN that imposes a 
condition in the learning map output, while Dong et al. (2019), Almeida et al. (2022), and 
Duran et al. (2022) used Attention gates. Almeida et al. (2022) also added an active contour 
method and a level-set fine-tuning to improve segmentation outcomes. Dong et al. (2019) 
introduced the DAUNet that uses deep supervision (D) and attention gates (A) with a U-Net 
base. Dai et al. (2020) proposed the use of a mask region-based convolutional neural network 
(R-CNN) model that provides a bounding box where the prostate lesion has a higher 
probability before segmenting the prostate with a 2D and 3D U-Net. In a pioneer work, 
Hambarde et al. (2020) used radiomic features as a deeply-supervision agent of a 2D U-Net, 
improving prostate segmentation results. With a direct application in EBRT, Kawula et al. 
(2022) compared manually segmented Volumetric Modulated Arc Therapy (VMAT) treatment 
plans with automatically segmented, obtaining interesting results. Table 1 shows information 
from the datasets and the U-Net based architectures used by authors conveniently ordered 
by year of publication, modality and data dimensionality. 
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Year Authors Modality # Patients Training/Validation/Testing Data Architecture 

2018 Tian et al. 
MRI 50 Public + PROMISE12 3D 

U-Net + V-Net + PSNet MRI 49 Public + ISBI2013 3D 
MRI 41 Private + InHouse 3D 

2019 

A. Chen et al.  MRI 50 Public + PROMISE12 2D U-Net 
Elguindi et al.  MRI 100 Private + PROMISE12 2D U-Net 

Dong et al.  CT 140 Private 2D DAUNet 
Wang et al.  CT 313 Private 2D U-Net 

Liu et al.  CT 1114 Private 3D V-Net 

2020 

Cem Birbiri et al.  MRI 40 Private + PROMISE12 2D U-Net + cGAN 
Dai et al.  MRI 42 Private + PROSTATEx-2 2D R-CNN U-Net 

Hambarde et al.  
MRI 50 Private + PROMISE12 2D U-Net 
MRI 40 Public + NCI-IBSI2013 2D U-Net 

Khan et al. MRI 11 Public + UKMMC 2D U-Net 
Sultana et al.  CT 115 Private 3D U-Net + GAN 

2021 
Barra et al.  MRI 100 Private 3D U-Net 

Meyer et al.  MRI 89 Private + ProstateX 3D U-Net 

2022 
Duran et al.  MRI 219 Private 3D ProstAttention-Net 

Almeida et al.  CT 2226 Private 3D U2-Net 
Kawula et al.  CT 69 Private 3D U-Net 

Table 1: Summary results. Proposed architectures, imaging modalities and datasets 
ordered by year of publication. 

4.1. Data Augmentation 
When working with private clinical datasets, the number of images is usually limited. Neural 
networks have millions of parameters, and to achieve good performance, the number of 
examples required needs to be proportional. However, this also increases complexity. 
Therefore, if we need more data, there are two solutions: search for more data or generate 
new ones. Data augmentation is a technique that allows the creation of distinct images or data 
from the dataset. Figure 4 illustrates some of those techniques. 

 
Figure 4: Geometrical Transformations: examples from a private CT dataset. 

From the reviewed works, 8 authors used data augmentation techniques. The preferred 
methods are geometrical transformations. A. Chen et al. (2019) also attempted colour 
augmentation with the adjustment of brightness, contrast and saturation. Cem Birbiri et al. 
(2020) added Gaussian noise and grouped pixels sharing similar visual features such as pixel 
intensity, location or texture, a technique called Super-pixel. Kawula et al. (2022) also 
attempted B-spline deformations besides 3D rotations around the image centre. Elguindi et 
al. (2019) spiced the rotations using 5 random permutations per axial image. Liu et al. (2019) 
applied shifts in the 3 orthogonal directions with amplitudes ranging from 1 to 10 mm. Khan 
et al. (2020) used random reflections and translation by a fixed amount in the x and y-axis and 
Tian et al. (2018) used translations and horizontal reflections. Table 2 summarises the 
techniques used by the authors for data augmentation. 
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Authors Techniques 
Tian et al. (2018) Translations and horizontal reflections 
A. Chen et al. (2019) Horizontal and vertical flips; Colour augmentation 
Elguindi et al. (2019) Scaling, cropping, rotations using 5 random permutations per image 
Liu et al. (2019) Shift in the 3 orthogonal directions (1 to 10 mm) 
Cem Birbiri et al. (2020) Super-pixel; Gaussian noise; Moving Mean 
Hambarde et al. (2020) Geometric transformations 
Khan et al. (2020) Random reflection and Translation in the x and y-axis 
Kawula et al. (2022) 3D rotations; B-spline deformations; Zooming 

Table 2: Data augmentation techniques. 

4.2. Preprocessing 
For medical imaging, an important aspect is anonymization. Personal information regarding 
patients and physicians is removed for ethical reasons. Aside from that, the efficiency of a 
neural network is highly dependent on input data quality. Besides, several methods will 
increase training speed and minimise losses. When working with images, the preprocessing 
step can consume a lot of time. Nevertheless, it is crucial to format and standardise data 
before feeding the network. From the reviewed articles, only Dong et al. (2019) does not 
mention any preprocessing technique. The most mentioned is the centre crop, usually 
obtaining a squared batch. A. Chen et al. (2019), for example, did a random crop to 256x256 
and then resize the images to 300x300, changing the pixel size. Cem Birbiri et al. (2020) also 
changed the pixel depth, downsampling from 16 bits to 8 bits. Besides, he also applied a 
contrast limited adaptive histogram equalisation on the axial image. A common problem with 
neural networks is sampling. With 3D volumes, voxel size is rarely isotropic. Liu et al. (2019), 
Wang et al. (2019), Sultana et al. (2020), and Meyer et al. (2021) addressed this issue by 
resampling to isotropic spacing.Le Cun, Kanter, and Solla (1991) showed that standardisation 
improves convergence properties by forcing the neurons output to the linear region of the 
activation functions. With this in mind, Wang et al. (2019), Hambarde et al. (2020), Khan et al. 
(2020), Almeida et al. (2022), Barra et al. (2021), Meyer et al. (2021), Duran et al. (2022), and 
Kawula et al. (2022) normalised the images to zero mean and unit variance. Almeida et al. 
(2022) and Kawula et al. (2022) also adjusted the window width and centre to a specific range. 
This tuning allows better contrast and visualisation of soft tissues. Table 3 summarises the 
preprocessing techniques used by the authors in this review. 

Authors Techniques 
Tian et al. (2018) Isotropic sampling 
A. Chen et al. (2019) Resize to 300x300; Random Crop of 256x256 
Elguindi et al. (2019) Downsample 16 bits to 8 bits; False colour images; Contrast Limited Adaptive; Histogram 

Equalisation on the axial image; Crop to 256x256 
Liu et al. (2019) Resample to 128x128x64 and spatial resolution 1x1x1.5 
Wang et al. (2019) Isotropic sampling; Truncate intensity values; Normalisation 
Cem Birbiri et al. (2020) Resize to 128x128 
Dai et al. (2020) Resize to 384x384 
Hambarde et al. (2020) Standardisation with z score; Non-linear median filter; Resize to 256x256 
Khan et al. (2020) Resize 320x320; Centre Crop 256x256; Intensity normalisation 
Sultana et al. (2020) Downsample to 5x5x5 voxel size and a resolution of 118x118 
Barra et al. (2021) Resize to 256x256; Standardisation with z score 
Meyer et al. (2021) Resampling to a common coordinate system; Crop in the intersection of the three scans; 

Volume is further cropped to 184x184; Intensity normalisation 
Almeida et al. (2022)  Centre Crop: 192x352x192; Window width: -140 to 210 HU; Standardisation with z score; 

Downscale to half-size in each axis 
Duran et al. (2022) Resample to 1x1x3 voxel size; Centre Crop of 96x96; Intensity normalisation 
Kawula et al. (2022) Pixel intensities truncated to the soft tissue window; Rescale; Centre Crop 128x128x128 

Table 3: Preprocessing techniques. 
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4.3. Training Parameters 
In a neural network, certain parameters allow optimising the weights and bias. These 
parameters are learned and tuned in the training stage. Typically, authors mention the 
number of epochs, batch size, learning rate monitored by the optimizer and the losses, as 
summarised in Table 3.4. One can see that the preferred optimizer from the articles in this 
review is the Adam optimizer, an extension to Stochastic Gradient Descent (SGD) algorithm. 
Kingma and Ba (2014) mention that Adam is computationally efficient and with low memory 
requirements, invariant to diagonal rescale of the gradients, highly appropriate for problems 
with very noisy/or sparse gradients and requires little tuning. Liu et al. (2019), Wang et al. 
(2019), Dai et al. (2020), Sultana et al. (2020), do not mention the optimizer they used, and A. 
Chen et al. (2019) presented a custom one. The remaining articles used Adam with initial 
learning rates ranging from 1 × 10−9 to 1 × 10−2. The batch size varies from 1 to a maximum 
of 20, and the number of epochs from 40 to 1300. 
A neural network will produce a prediction. Loss functions allow the quantification of the 
difference between the prediction and the expected outcome, deriving the gradients and 
updating the weights. The goal is to minimise the loss function. From the reviewed papers, 
the most used one is the Cross-Entropy function. It computes the difference between two 
probability distributions using the maximum likelihood estimation. To overcome class 
imbalance, some authors used a weighted loss function (Tian et al., 2018, A. Chen et al., 2019; 
Khan et al., 2020; Elguindi et al., 2019; Wang et al., 2019; Hambarde et al., 2020; Sultana et 
al., 2020; Barra et al., 2021; Duran et al., 2022). Another approach we found was the Dice loss 
that seeks to balance foreground and background. Dong et al. (2019), Liu et al. (2019), Meyer 
et al. (2021), and Kawula et al. (2022) used only the Dice loss function but Barra et al. (2021) 
combined it with the binary focal loss and Almeida et al. (2022) and Duran et al. (2022) with 
the cross-entropy. Table 4 summarises the training parameters used by authors in this review. 
        Authors # Epochs Batch Size Optimizer LR Loss 
Tian et al. (2018) N.A. N.A. SGD 1x109 Weighted cross-entropy 
A. Chen et al. (2019) N.A. N.A. Custom N.A. Adversarial. Weighted cross-entropy 
Dong et al. (2019) 200 20 Adam 1x10-3  
Elguindi et al. (2019) 200 16 Adam 1x10-4 Dice Loss 
Liu et al. (2019) 1300 8 N.A. N.A. Cross-entropy 
Wang et al. (2019) N.A. 20 N.A. 1x10-3 Multi-label cross-entropy 
Cem Birbiri et al. (2020) 150 1 Adam 1x10-2 Cross-entropy 
Hambarde et al. (2020) N.A. 32 Adam 2x10-4 Cross-entropy 
Khan et al. (2020) N.A. 16 Adam 1x10-4 Weighted cross-entropy 
Barra et al. (2021) 40 4 Adam 1x10-3 Dice + Binary focal 
Meyer et al. (2021) 270 1 Adam 1x10-3 Dice Loss 
Almeida et al. (2022) 100 2 Adam 3x10-4 Dice + Cross-entropy 
Duran et al. (2022) 25 N.A. Adam 1x10-3 Dice + Cross-entropy 
Kawula et al. (2022) N.A. N.A. Adam 1x10-7 Dice Loss 

Table 4: Training Parameters. LR: Learning Rate. N.A.: Not Available. 

4.4. Evaluation 
The DSC is a metric that quantifies the degree of similarity between two regions (ground truth 
and prediction) and is highly used to measure the performance of an image segmentation 
method. In this review, we sought articles reporting the DSC for the prostate. Some authors 
also attempted segmentation of other organs, namely the bladder and rectum. This approach 
is also interesting since it mimics human holistic contouring. Dong et al. (2019) attempted a 
multi-organ segmentation framework to apply in an EBRT planning workflow. The obtained 
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DSC for the prostate was the lowest in this review (0.52), but the results for the bladder and 
rectum were interesting. Dong et al. (2019) also mentions that the manual ground truths used 
were not perfect, and one must recall that they did not use any preprocessing technique. 
Another multi-organ attempt was from Wang et al., 2019 building a model capable of 
capturing shape with less noise. Sultana et al. (2020) added a GAN and claimed an 
improvement in segmentation accuracy by allowing the fine segmentation networks to focus 
only on the region of each organ. Almeida et al. (2022) introduced an active contour method 
and an attention gate to a traditional U-Net, improving the segmentation outcomes of deep 
learning. Kawula et al. (2022) also attempted multi-organ, claiming that treatment plans 
generated with automatic contours proved sufficient for treatment target volume coverage. 
The highest DSC was from Meyer et al. (2021) (0.94), using multi-planar strategies. In 
summary, the best results were from 3D approaches, and for multiclass attempts, Sultana et 
al. (2020) achieved a DSC > 0.90 for the prostate, bladder and rectum. Table 5 summarises the 
obtained results. 

Authors Prostate Bladder Rectum 
Tian et al. (2018) 0.85 N.A. N.A. 
A. Chen et al. (2019) 0.88 N.A. N.A. 
Dong et al. (2019) 0.52 0.95 0.84 
Elguindi et al. (2019) 0.75 0.90 0.78 
Liu et al. (2019) 0.88 N.A. N.A. 
Wang et al. (2019) 0.89 0.94 0.89 
Cem Birbiri et al. (2020) 0.83 N.A. N.A. 
Dai et al. (2020) 0.88 N.A. N.A. 
Hambarde et al. (2020) 0.92 N.A. N.A. 
Khan et al. (2020) 0.88 N.A. N.A. 
Sultana et al. (2020) 0.90 0.96 0.91 
Barra et al. (2021) 0.90 N.A. N.A. 
Meyer et al. (2021) 0.94 N.A. N.A. 
Almeida et al. (2022) 0.86 0.96 0.84 
Duran et al. (2022) 0.88 N.A. N.A. 
Kawula et al. (2022) 0.87 0.97 0.89 

Table 5: DSC Values. 

5. Final Remarks 
Manual segmentation is the preferred method for EBRT planning. Although time-consuming, 
the available automatic alternatives in EBRT planning systems are far from optimal, accurate 
or fast. ATLAS based methods require long manual adjustment times. While deep learning 
models are not yet widely available, research shows promising results. For Prostate cancer, 
the main segmentation challenges may arise from the wide diversity in patients Hounsfield 
Unit (HU) from the CT, even for the same organ. A young prostate does not have the same 
attenuation coefficient as an older prostate. The same for other organs. Besides, the bladder 
may be filled with urine and the rectum with gas. A previously treated organ, with either 
surgery or radiotherapy, also has a different attenuation coefficient than an untreated one. 
There are also patients with hip prostheses that will cause artefacts in the CT image. This 
diversity may provide challenges to overcome, searching for an accurate segmentation 
framework.  
When performing manual segmentation, medical experts rely on MRI images, to increase soft-
tissue contrast. Besides, their expertise and anatomical knowledge allows them to draw a 
contour based on a 3D mental representation of the volume. For some 2D images, it may seem 
impossible to segment any structure, at least for an untrained eye. Our visual perception is 
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sometimes improved by the awareness of other structures. From this review, the best results 
were from 3D approaches with Meyer et al. (2021) achieving 0.94 with a multi-planar strategy. 
The addition of GAN to a U-Net also seems to improve segmentation outcomes, even for 
multi-organ. Sultana et al. (2020) obtained a DSC of 0.90 for the prostate, 0.96 for the bladder 
and 0.91 for the rectum. Barra et al. (2021) achieved a DSC of 0.90 for the prostate with a 
more traditional approach. The worst results (not shown) were in the apex and base, where 
the segmented ground truth is small and presents a challenge for the network. In summary, 
from the reviewed articles, it seems that the application of state-of-the-art techniques such 
as GAN, proper preprocessing methods such as isotropic resampling, cropping or resizing, and 
training with weighted functions to address class imbalance, is a good strategy. Although the 
U-Net architecture offers structural simplicity and overall good accuracy, results are always 
highly dependent on the ground truth segmentations and the dataset image quality. 
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