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Abstract 
Copper-steel welded joints are now used widely in heat exchangers, piping and 
power generation industries. Owing to their different thermal characteristics, sound 
welding of the pair is a challenging task. Extensive research is carried out to achieve 
successful welding of copper and steel. This article presents an insight into the works 
done on the joining of copper and steel by various techniques. The microstructural 
modifications in different approaches are critically presented. Mechanical properties 
of joints obtained through different techniques are compared. 
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1. Introduction 

Owing to good thermal conductivity, excellent corrosion resistance and high ductility, copper 
alloys are widely used as a thermal conductive material in chemical and metallurgy industries. 
However, the low strength and high thermal expansion of copper limits its uses in different 
industrial applications. Therefore, the joining of copper with high-strength alloys such as steel 
is of great attention to researchers. The bi-metallic joint of copper steel is extensively used in 
heat exchangers in nuclear and power generation industries. Both fusion weldings and solid-
state weldings were used by researchers to obtain copper-steel joining. 

The major difficulty in fusion welding of copper and steel is the huge difference in their 
thermal properties. The higher thermal conductivity of copper results in the dissipation of heat 
from the weld zone. Also, the difference in thermal expansion coefficient results in difference 
in shrinkage during cooling. This leads to the generation of residual stress and consequently 
leads to crack generation in the weldment. Therefore, special attention is required to control 
the heating and cooling of the fusion joint to achieve defect-free joining. Moreover, the 
differences in the metallurgical aspects of the two materials are concerning aspects of 
achieving successful joining between them. Due to the metallurgical differences, in the liquid 
phase, the materials tend to get separated, which leads to copper inclusion and hot cracking. 
Besides laser welding and electron beam welding, TIG and other arc welding processes also 
were used for the welding of copper and steel. The Fe-Cu phase diagram (Figure 1) suggests 
that solid-state copper-steel bonding can be achieved at elevated temperatures. Therefore, 
several solid-state techniques such as explosive welding, friction welding, diffusion bonding, 
etc., were attempted for the successful fabrication of copper-steel joints. 
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Figure 1: Fe-Cu phase diagram (Mai and Spowage 2004) 

In this article, the state-of-the-art of welding of copper and steel is presented. Different 
approaches adopted for achieving successful joining of them are analyzed. The joint 
microstructure and mechanical properties of the joints are critically discussed. Finally, the 
article is summarized with some suggestions for future research. 

1.1. Different welding techniques 

1.1.1. Laser welding 

Laser welding is one of the most used fusion welding techniques for dissimilar welding. Laser 
welding of copper and steel is usually performed by offsetting the laser beam on the steel side 
(Figure 2), as the melting temperature of steel is much higher than copper. 

  
Figure 2: Schema of laser welding of copper and steel (Chen et al. 2015) 

Mai and Spowage (2004) used Nd-YAG laser as the heat source focusing on the steel side to 
weld copper and tool steel. They observed that due to the low heating of copper, a very thin 
interface zone (~70µm) with the presence of micro-pores was formed. Chen et al. (2015) 
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adopted two different techniques of welding, such as fusion mode and welding-brazing mode, 
by changing the laser beam offset and compared the joints obtained by those approaches. 
They observed liquid phase separation in fusion mode and consequent reduction in interface 
hardness as compared to welding-brazing joint. Also, the high melting of copper in fusion 
mode resulted in the deterioration of joint toughness. Further microstructural analysis 
revealed Scraggy morphology in the welding-brazing joint due to the cooling of molten steel 
by cold copper. However, micro-cracks were evident in fusion joining which were eventually 
filled by molten copper (Chen et al. 2013). Yao et al. (2009) welded copper and E235A steel of 
different thicknesses by CO2 laser. They used different process parameters such as laser 
power, offset in steel, weld geometry, etc., and evaluated the amount of copper at the fusion 
zone. The high ratio of copper at the stir zone resulted in a thick fusion zone, but a significant 
amount of porosity was also evident. However, low dilution of copper resulted in a pore-free 
fusion zone (Figure 3). 

 
Figure 3: (a, c) Microstructure and (b, d) corresponding elemental distribution of 

laser welded copper and steel, (a, b) thinner plate, (c, d) thicker plate 
(Yao et al. 2009) 

Weigl and Schmidt (2010) used pulsed Nd:YAG laser with a moving heat source for spot 
welding of copper and stainless steel. Although symmetric weld morphology was achieved, 
porosity at the weld zone was inevitable. By using a continuous CO2 laser to weld copper and 
pure iron, Phanikumar et al. (2005) observed different microstructural modifications on both 
sides of the weld. Jagged microstructure of weld zone, iron-rich banded rings at copper 
indicated convective material flow leading to mixing of iron and copper. Kuryntsev, 
Morushkin, and Gilmutdinov (2017) used fiber laser to weld copper and austenitic stainless 
steel and observed that porosity, micro-cracks and copper penetration were evident in the 
joints. The defect-free joint yielded moderate electrical conductivity as compared to copper 
and steel. Mannucci et al. (2018), during laser (Yb:YAG laser) welding of copper and 316L 
stainless steel, observed that high laser power led to hot cracking at the weld zone. They also 
concluded that the level of copper penetration significantly reduced the corrosion resistance 
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of the welded joints Copper penetration at the weld zone was also observed by Moharana et 
al. (2020) during laser welding of copper and AISI 304 stainless steel. 

1.1.2. Electron beam welding (EBW) 

 
Figure 4: (a, b) Globules of steel and copper in weld zone, (c, d) microcracks and 

porosity (Magnabosco et al. 2006) 

Tosto et al. (2003) attempted EBW of copper and 304L and observed non-equilibrium phases 
at the weld zone, which made the overall welding unstable. Magnabosco et al. (2006) also 
observed poor weld zone during EBW of copper and austenitic stainless steel. They observed 
porosity and microfissures along with solidification cracks at the fusion zone. Also, globules of 
copper and steel were observed in a separate state from the steel and copper matrix, 
respectively (Figure 4). Guo et al. (2016) also observed globular phase separation during EBW 
of copper and 304 stainless steel with an offset focus of electron beam on the copper side. 
However, other defects, such as cracks and porosity, were minimized with low beam offset, 
and the joint resulted in high strength. 

Kar et al. (2018) and Kar, Roy, and Roy (2016) observed that with proper beam oscillation 
parameters, the globular phase separation, cracks, and pores were significantly reduced in 
EBW of copper-304 stainless steel joints. The size and number of pores were decreased, and 
high strength joint was achieved. Zhang et al. (2015), during EBW of QCr 0.8 copper alloy and 
304 stainless steel, observed that the addition of copper filler at the weld interface reduced 
the residual stress on either side of the joint. 

1.1.3. Tungsten inert gas welding (TIG) 

TIG welding is the most used conventional fusion welding technique for welding copper and 
steel. Munitz (1995) joined copper and stainless-steel pipes through the TIG welding 
technique and observed the phase separation of copper and steel in the molten pool and their 
solidification of them as distinct phases. The high cooling rate associated with TIG welding 
process resulted in phase separation. Soysal et al. (2016) also observed phase separation in 
TIG weld zone of copper and low carbon steel. They also observed horizontal layers in the 
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weld zone formed during the cooling of thick plate. Chang et al. (2017) welded stainless steel 
with copper and copper alloy by TIG welding process and observed that the major alloying 
elements of steel, such as Fe and Cr were mixed with copper. Therefore, clusters of grains 
containing Fe and Cr were visible in the copper matrix. Several researchers used filler material 
to achieve successful welding of copper and steel. Shiri et al. (2012) used different filler 
materials for TIG welding of copper and 304 stainless steel. They concluded that the use of 
copper filler yielded defect-free welding with high joint strength, whereas the use of 304 
stainless steel filler and Ni-Cu-Fe filler resulted in a crack at the weld zone. Saranarayanan, 
Lakshminarayanan, and Venkatraman (2019) used ErNiCu-7 as filler material to join copper 
and 304 stainless steel. They concluded that the cooling was majorly influenced by the filler, 
and therefore different solidification mechanisms occurred at different portions of the fusion 
zone. As a result, different grain structures such as globular Fe, and dendritic Fe grains were 
visible (Figure 5). 

 
Figure 5: Different grain modifications at various regions of fusion zone in TIG 

welded copper-stainless steel joint 
(Saranarayanan, Lakshminarayanan, and Venkatraman 2019) 

1.1.4. Other fusion welding techniques 

Velu and Bhat (2013) observed that for Metal Inert Gas (MIG) welding of copper and EN31 
steel, nickel-based filler resulted good joining of them, whereas bronze-based filler resulted 
in porosity and cracks at the weld zone. In the nickel-based joint, intermetallic diffusion was 
also evident, indicating excelled joining between the weld materials. Asai et al. (2012) 
adopted a hybrid MIG and plasma welding technique to join copper and steel (Figure 6). They 
suggested that the hybrid process was a feasible welding technique for the dissimilar pair. 
Cheng et al. (2019) used ERCuSi-A filler for double-side MIG-TIG hybrid welding of copper and 
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stainless steel (Figure 7). They observed that welding in fusion mode resulted in scraggy 
interface with significant strength reduction at HAZ. The welding-brazing mode yielded defect-
free joining with diffusion of weld material in each other. 

 
Figure 6: (a) Plasma-MIG hybrid welding setup, (b) nozzle configuration for the 

welding (Asai et al. 2012) 

 

 
Figure 7: Schema of TIG-MIG double side welding (Cheng et al. 2019) 

1.1.5. Explosive welding 

 
Figure 8: Schema of copper-steel explosive welding (Zhang et al. 2018) 

In explosive welding of copper and steel, generally, copper is used as the base plate, and steel 
is used as the flyer plate, as shown in Figure 8. Durgutlu, Gülenç, and Findik (2005) welded 
copper and steel plates by explosive welding and observed a wavy interface with a high 
explosive ratio and high stand-off-distance as compared to flat interface for low parameters. 
They also concluded that the wavy interface exhibited higher mechanical strength. A similar 
observation was made by Bina, Dehghani, and Salimi (2013) while welding copper and 304L 
stainless steel. However, they analyzed the joint interface and concluded that diffusion of 
weld materials did not occur in the explosive welding of copper and steel and the joint failed 
in brittle manner in a tensile test. Therefore, to strengthen the bonding, they annealed the 
weld, resulting in the formation of a thick diffusion zone at the interface (Figure 9). Also, the 
annealed joint fractured in ductile manner. Zhang et al. (2018) examined the explosive welded 
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and annealed copper-steel joint and observed two different features at the wavy joint 
interface. A thinner (~5µm) solid state joint and a wider (~50µm) vortex flow was evident at 
the interface. During the tensile test, crack propagated in the copper, indicating the wavy 
interlayer's excelled property. 

 
Figure 9: Copper-steel explosive welded interface, (a) as-welded, (b) after 

annealing (Bina, Dehghani, and Salimi 2013) 

1.1.6. Friction welding 

Friction welding is also proven to be efficient for copper and steel welding. Luo et al. (2012) 
observed intermetallic diffusion during radial friction welding of brass and high carbon steel. 
However, the extent of Fe diffusion in copper was higher than the copper diffusion in Fe 
(Figure 10). A smooth interface was formed with some ‘furrow-shaped’ holes due to reduced 
friction in brass at semi-solid state. Wang et al. (2013) also observed elemental diffusion and 
consequent formation of Cu9Si and FeCu4 during radial friction welding of T3 copper and steel. 
Although the intermetallic phases were not distinctly visible in the micrograph, the XRD 
analysis indicated the formation of the intermetallic compounds (Figure 11a). The formation 
of the intermetallic resulted in strong metallurgical bonding between the weld materials. They 
also observed that recrystallization hardening did not occur at the weld interface due to plastic 
deformation during welding. Sahin, Çıl, and Misirli (2013) also observed the formation of FeCu4 

along with Cu2NiZn at the weld interface of friction welded 304 stainless steel and copper 
(Figure 11b). However, they observed that the Fe diffusion was limited only to the interface 
zone. The breaking of the copper oxide layer at the interface led to the formation of ‘dirt 
repellent surfaces’ (Sahin, Çıl, and Misirli 2013). 

 
Figure 10: Radial friction welded brass-steel joint and corresponding elemental 

distribution (Luo et al. 2012) 
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Figure 11: XRD analysis of friction welded copper-steel joints 

(Wang et al. 2013; Sahin, Çıl, and Misirli 2013) 

1.1.7. Other solid-state welding techniques 

Yilmaz and Çelik (2003) adopted diffusion bonding to join copper and 304 stainless steel and 
observed good thermal and electrical conductivity in the welded structure. However, the 
interface consisting of intermetallic alloy exhibited superior electrical conductivity and 
modified thermal conductivity. The detailed analysis of the interface suggested that the 
intrinsic diffusion coefficient of copper was higher than steel. Therefore, the intersection of 
elements shifted towards copper from the original interface. Pure copper and low carbon steel 
were welded by He et al. (2016) using the ballistic impact welding technique. The frictional 
heat associated with the impact welding resulted in the annealing of copper near the joint 
interface and a wavy interface was formed. The elemental analysis revealed that diffusion of 
elements was restricted only in the vicinity of the interface and the interface was free of 
intermetallic compounds (He et al. 2016). Kore et al. (2011) employed electromagnetic impact 
welding to join copper and stainless steel and observed grain compression near the interface. 
Also, due to the entrapment of oxide, voids were observed away from the coil. The vacuum 
brazing technique was adopted for joining pure copper and 304L stainless steel by 
Choudhary, Laik, and Mish (2017) while using silver-based filler and an additional Ni coating 
on stainless steel. They observed that at low brazing temperatures, Ni coating led to defect-
free joining with layered interface. However, high-temperature brazing led to crack formation 
at the interface due to differences in elemental diffusivity and thermal stress. Friction stir 
welding was also successfully used to weld copper and stainless steel by Jafari et al. (2017). 
Grain refinement at the interface and grain coarsening at the HAZ was evident in the welded 
joints. Also, diffusion of Ni from steel to copper was detected from the elemental analysis 
(Jafari et al. 2017). Bhogendro Meitei et al. (2018, 2020) used induction welding to weld 
copper with different steels and observed diffusion of copper and iron on either side of the 
interface. Owing to the diffusion, intermetallic compounds, as well as different oxides, were 
formed at the interface. However, a few micro-voids and micro-cracks were also evident. 

1.2. Comparison of different techniques 

The mechanical behavior of copper-steel welded joints fabricated by different methods is 
compared to understand the effect of different welding techniques. The typical microhardness 
distribution of laser welded copper and steel joints (Figure 12a) suggests negligible distortion 
in both steel and copper HAZ as the hardness of HAZs is almost similar to the respective un-
welded materials. The interface microhardness is intermediate to the copper and steel 
microhardness and hardness gradient from the steel side to the copper side is also observed 
(Chen et al. 2015; Weigl et al. 2010; Kuryntsev, Morushkin, and Gilmutdinov 2017; Moharana 
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et al. 2020). However, an enhancement in the microhardness of steel and copper due to 
induced residual stress may also occur (Mai and Spowage 2004). The microhardness gradient 
at the weld interface largely depends on copper melting and can be omitted by performing 
welding-brazing join (Chen et al. 2015). EBW of copper and steel also yields similar 
microhardness distribution profile with gradient in the weld zone (Figure 12b), which can be 
minimized by offsetting the electron beam. However, unlike laser welding, a significant 
reduction in microhardness at HAZ of copper is evident in the EBWed joints (Kar, Roy, and Roy 
2016; Magnabosco et al. 2006; Guo et al. 2016). TIG welding of copper and steel leads to 
softening at HAZ in both copper and steel (Figure 12c) (Chang et al. 2017; Saranarayanan, 
Lakshminarayanan, and Venkatraman 2019). However, the selection of proper filler may 
eliminate the softening effect (Shiri et al. 2012). The fusion zone of the TIG welded joints 
exhibits a nearly homogeneous distribution of microhardness (Shiri et al. 2012; 
Saranarayanan, Lakshminarayanan, and Venkatraman 2019; Chang et al. 2017). Other fusion 
welding processes, such as for double side MIG-TIG hybrid welding and MIG welding, result in 
uniform microhardness distribution in the fusion zone. However, the hybrid welding yields 
softening of copper up to 15 mm away from the weld zone, whereas (Figure 12d) MIG welding 
with Ni filler enhanced hardness in steel HAZ (Cheng et al. 2019; Velu et al. 2013). Explosive 
welding of copper-steel pair leads to enhancement of hardness in the weld materials due to 
strain hardening imposed during the collision (Figure 12e). Owing to the strain hardening, the 
interface of an explosive welded joint may exhibit higher hardness than the weld materials' 
hardness, depending on the amount of copper diffusion (Zhang et al. 2018; Bina, Dehghani, 
and Salimi 2013). Enhancement of microhardness in the vicinity of the weld interface by work 
hardening is also evident in the induction welding of copper and steel (Figure 12f) (Bhogendro 
Meitei et al. 2018; Bhogendro Meitei et al. 2020). In friction stir welding, the interface 
microhardness is observed to be higher than the un-welded materials due to intense grain 
refining (Figure 12g) (Jafari et al. 2017). However, other solid-state processes, such as friction 
welding and impact welding, result in no significant change in the weld material 
microhardness and a sharp transition of hardness from steel to copper side is observed (Figure 
12h) (He et al. 2016; Kore et al. 2011; Sahin, Çıl, and Misirli 2013). 

 
Figure 12: Comparison of microhardness distribution in copper-steel joints 

obtained by different processes (a) laser welding, (b) electron beam welding, (c) 
TIG welding, (d) MIG-TIG hybrid welding, (e) explosive welding, (f) induction 

welding, (g) friction stir welding, (h) ballistic impact welding 
(Zhang et al. 2018; Shiri et al. 2012; Kuryntsev, Morushkin, and Gilmutdinov 2017; 

Jafari et al. 2017; He et al. 2016; Guo et al. 2016; Cheng et al. 2019; 
Bhogendro Meitei et al. 2018) 
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The tensile strength of the laser welded copper-steel joints depends on the process 
parameters and laser beam offset. Depending on the amount of heat input, the fracture of 
laser welded copper-steel joints occurs at weld zone or HAZ of copper (Chen et al. 2015; 
Yao et al. 2009; Kuryntsev, Morushkin, and Gilmutdinov 2017; Mannucci et al. 2018; 
Moharana et al. 2020). As high as 93% of copper tensile strength may be achieved by laser 
welding of the pair (Kuryntsev, Morushkin, and Gilmutdinov 2017). In EBWed copper-steel 
joints, ductile fracture takes place at HAZ of copper or in the fusion zone, depending on the 
mode of joining. The EBWed copper-steel joint can exhibit a maximum of 97% of the tensile 
strength of copper (Guo et al. 2016; Kar, Roy, and Roy 2016). In the case of TIG welded joints, 
during tensile loading, fracture takes place at the HAZ of copper and a maximum of 96% of 
copper strength can be achieved (Shiri et al. 2012; Saranarayanan, Lakshminarayanan, and 
Venkatraman 2019). For double-side MIG-TIG hybrid welding of copper and steel, 84% joint 
strength can be achieved, whereas MIG welding of the pair results in 79% joint strength (Velu 
et al. 2013; Cheng et al. 2019). In defect-free explosive welded joints, fractures occur on the 
copper side away from the weld interface, and due to the strain hardening effect strength of 
the joints may be even higher than in unwelded copper (Bina, Dehghani, and Salimi 2013). 
Among other solid-state welding techniques, friction stir welding results in nearly 80% joint 
strength, whereas induction welding may exhibit almost 100% joint strength (Bhogendro 
Meitei et al. 2020; Jafari et al. 2017). 

1.3. Corrosion behavior of welded joints 

The corrosion resistance of steel, especially stainless steel, derives from the passivation layer 
generated by chromium; copper is a corrosion resistive material in the chemical environment 
and in the atmosphere. However, in the copper-steel welded structure, the different nature 
of the metals creates a galvanic couple which results in localized corrosion. Mannucci et al. 
(2018) observed that in laser welded copper-steel structure, the amount of copper in the weld 
zone determined the corrosion behavior of the joint in salt water. They also found that in 
copper-rich zones, severe intergranular corrosion occurred. Xu et al. (2021) also found similar 
severity of corrosion in the copper-rich zone for TIG welded copper-steel joint in CuSO4 and 
H2SO4 solution. They observed that in the welded structure, corrosion resistance was higher 
in steel and lowest in copper, whereas the welded zone yielded intermediate corrosion 
resistance. In the welded zone, the γ-Fe rich phase acted as cathode and ε-Cu rich phase acted 
as anode, which created micro-galvanic couples in corrosive medium. Due to the galvanic 
couples, the anodic copper was dissolved rapidly and formed corrosion pits. 

2. Summary and Future Research Directions 

Several welding techniques adopted for copper-steel joining are discussed in this article. The 
microstructural features achieved by different processes are critically analyzed. 

Laser welding of copper and steel requires precise offsetting to achieve defect-free joining, 
whereas copper dilution controls the weld bead appearance. Liquid phase separation is one 
important aspect of the electron beam welding process, which must be controlled with proper 
parameter selection to achieve sound welding. TIG and other fusion welding processes can 
also produce defect-free joints with proper filler material. Solid state processes such as 
explosive welding, friction welding, etc. also yield good joining of copper and steel by diffusion 
of alloying elements. Owing to the diffusion of elements in solid state welding processes, a 
few intermetallic compounds, such as FeCu4, Cu9Si, and Cu2NiZn, formed in the joint interface. 
The compounds aid in achieving good metallurgical bonding between the weld materials. 
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The microhardness distributions of the joints obtained by different processes suggest 
softening of copper at HAZ in fusion welding processes such as laser welding, electron beam 
welding, TIG welding, etc. The weld zones of fusion welded joints exhibit intermediate 
microhardness of copper and steel with a gradient from the steel side to the copper side. 
However, the softening of copper is not evident in solid-state weldings except in friction 
welding. Also, a sharp decrease from interface microhardness to copper microhardness is 
evident in solid-state welded joints. Among fusion welding processes, electron beam welded 
copper-steel joints exhibit higher tensile strength, whereas, among solid-state weldings, 
explosive welding of the pair may result in achieving tensile strength even higher than 
unwelded copper. 

The majority of the available literature is focused on the welding of copper with stainless steel 
and the mechanical performance of the joints. Emphasis of further research may be given to 
welding of other engineering steels and different copper alloys. Also, more in-depth 
microstructural characterization such as grain orientations, residual stress, etc. may be 
analyzed thoroughly to understand the joints performance in detail. The formation of 
intermetallic compounds in the weld interface and their consequent effects on weld 
properties, especially in solid-state welding, may be analyzed. In addition, other performance 
measures, such as corrosion resistance, high-temperature performance, etc., may be 
evaluated in detail. 
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