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Abstract 
Bayes' Theorem (BT) is treated in probability theory and statistics. The BT shows how 
to change the probabilities a priori in view of new evidence, to obtain probabilities a 
posteriori. With the Bayesian interpretation of probability, the BT is expressed as the 
probability of an event (or the degree of belief in the occurrence of an event) should 
be changed, after considering evidence about the occurrence of that event. Bayesian 
inference is fundamental to Bayesian statistics. An example of practical application 
of this theorem in Health Systems is to consider the existence of false positives and 
false negatives in diagnoses. At the Academy, the theme of BT is exposed almost 
exclusively in its analytical form. With this article, the authors intend to contribute 
to clarify the logic behind this theorem, and get students better understanding of its 
important fields of application, using three methods: the classic analytical (Bayesian 
inference), the frequentist (frequency inference) and the numerical simulation of 
Monte-Carlo. Thus, it intends to explain BT on a practical and friendly way that 
provides understanding to students avoiding memorizing the formulas. We provide 
a spreadsheet that is accessible to any professor. Moreover, we highlight the 
methodology could be extended to other topics. 
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1. Introduction 

Bayes' Theorem (alternatively Bayes' law or Bayes' rule) has played since 18th century. It refers 
to a mathematical formula used to calculate the probability of an event based on the data 
about another event that has already occurred, which is called conditional probability (Joyce 
2021). 

Bayes' Theorem (BT) is still strongly popular due to its applications in many fields, helping 
people to make decisions under conditions of uncertainty (Fienberg 1992). In the domain of 
scientific knowledge disciplines, such as Physics and Chemistry, the first studies were 
essentially experimental, and the observed effects were later explained with the support of 
mathematical logic (Jeffreys 1973). The experiences carried out by its precursors are now 
routinely reproduced in the laboratories of academic institutions, to provide students with a 
better understanding of the phenomena and their laws that those disciplines develop 
(Daveedu Raju et al. 2019). In the field of Statistics, however, experimentation in academic 
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circles is not common; explained perhaps by the difficulty in obtaining appropriate didactic 
materials or by its inexistence, given the means and the necessarily long time to reproduce 
the experiences that the authors of the many laws of this discipline, certainly carried out to 
formulate them (Warren 2018). 

Nowadays, these difficulties are overcome, since computers, equipped with numerical 
simulation programs, can easily and quickly reproduce the same experiments that those 
authors have carried out with a lot of effort, treat the resulting simulated data (samples), and 
verify the correction of those laws, for better understanding and satisfaction on the part of 
the students (Cook 2002; Gerow et al. 2018). 

Teaching methods vary accordingly to each course´s objectives. There are some teaching 
techniques used in engineering classes that involve lectures, demonstrating concepts, 
focusing on principles and/or on applications, making analogies and lastly, problem-solving 
sessions to increase students’ capability of understanding and applying theory and solve 
problems. However, we have noticed, in Probabilities and Statistics discipline, BT is most 
taught in an analytical way causing that a large part of students chooses to memorize the 
formulas rather than understand the inherent logic - since they do not get the whole 
understanding (deductive logic). 

The rapid technological advancements in recent years have led to the development of diverse 
tools and infrastructure of integrating science, education, and technology. This in turn has 
expanded the variety of novel methods for learning and communication. The use of computer 
numerical simulation can thus contribute decisively so that Statistics is no longer considered 
by most students to be something abstract and boring, being limited only to the description 
of its laws and carrying out exercises based on the consequent form. Simulations can provide 
powerful pedagogical tools to explain difficult statistical concepts in probability and statistics 
classes (Christou and Dinov 2010). The logic in the construction of numerical simulation 
models, reproducing statistical laws will contribute decisively to the improvement of cognition 
in their learning (Gigerenzer and Hoffrage 1995). Hence, the purpose of this study is to 
demonstrate how to use Monte-Carlo Simulation to get engineering students a better 
understanding of BT. 

This paper is organized as follows: next section presents the materials and methods used, 
focusing on learning the Bayesian´s Theorem. The following section – results – shows practical 
applications. Discussion highlights some important aspects from the practical application to 
students and final remarks are made. 

2. Materials and Methods 

To present a computational tool for applying Monte-Carlo Simulation, it is necessary to 
understand how active learning happens, exploring this subject. Additionally, it is important 
to understand how the probability and statistics discipline has been taught over time, to 
suggest a new and effective tool that help students to understand what BT all is about and 
what it is used for. With this aim, it was performed an online search about methodologies 
used in the discipline Probability and Statistics at Portuguese faculties of engineering, with 
special attention on BT. We have found eight high education institutions (FEUP-University of 
Oporto, ISEL-Polytechnic of Lisbon, Lusófona University, NOVA University of Lisbon, 
Polytechnic of Tomar, Técnico-University of Lisbon, UBI-University of Beira Interior, and UTAD-
University of Alto Douro) that provide the content of Probability and Statistics discipline on 
their websites. Most of the courses do not highlight methodologies used and others have 
focus on teaching how to use software like Software R and STATISTICA. No innovative tool was 
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identified, what made us to believe that they use conventional methods and motivated us to 
develop a new approach using Monte-Carlo simulation, aiming to facilitate engineering 
students´ understanding of BT. Thus, we intend to provide a computational tool to teach BT 
in engineering classes instead of a passive transfer of classic knowledge based on analytical 
methods. Besides, MS EXCEL is the only software tool needed which is widely available in 
highest educational facilities. A simulation tool allows to engage students in deep learning as 
opposed to merely memorizing - the act of memorization does not last long. Three different 
ways to use BT are presented: a traditional solution by Bayesian inference (Figure 1), followed 
by the frequentist method (Figure 2) and finally we apply the Monte-Carlo simulation method 
in MS EXCEL (Figure 3). The spreadsheets are programmed in such a way that enable readers 
to solve their own problems. The spreadsheet is available in a DROPBOX link. 

2.1. Active learning 

Any engineering course aims to prepare students towards a solid background. However, there 
is a sum of challenges to face daily at universities. Engineering professors find quite often 
bored and demotivated students that do not pay attention to classes and consequently 
achieve low tests grades. Nowadays, teachers must reinvent themselves, follow the 
technological tendencies of teaching (Auster and Wylie 2006; D’Andrea and Gosling 2005; 
Diamond, Koernig, and Iqbal 2008) and change their teaching style to match student´s 
interest. The fast changes in the business world push the academia to adopt new ways to 
achieve learning’s goals. In this dynamic context, students build their knowledge through an 
educational approach called “active learning” that places students at the center of the 
learning process, requiring an active participation of students on building their own 
knowledge. In that case, professors assume the role of supervisors on building knowledge and 
are open to its exchange. In fact, teaching tendencies mostly make use of computers since it 
is part of the daily activities at workplace (Konopka, Adaime, and Mosele 2015; Wang 2020). 
The use of MS EXCEL in practical classes help students to solve problems and improves the 
learning process in the case of engineering students. In addition, it enables to provide 
dynamics practical classes, increasing students’ motivation. 

2.2. Probability and statistics 

Probability and Statistics is an essential subject to teach engineering students. It has become 
a vital tool to engineers (Johnson 2017). Statistics is the art of learning from the data (Ross 
2009) providing the basis for making decisions or choosing actions. It is applied in so many 
areas such as manufacturing, development of food products, computer software, energy 
source and others (Walpole et al. 2012). Related to quality improvement, statistics plays a 
major role and engineers with basic statistical skills can be succeeded in attaining this goal 
(Johnson 2017). Different teaching approaches have been studied since the 70s concerning 
Probability and Statistics (Simon, Atkinson, and Shevokas 1976). Recently, research has shown 
interest to make mathematics closer to student´s experience. They recommend the use the 
real-life context in teaching, turning it in a prominent method to use (Budimir 2016). Thus, the 
application of Monte Carlo simulation will highlight a real-life health problem. The problem is 
considered to be transversal, since the concepts and technics that are explored during the 
case are within the scope of Industrial and Engineering Management’s issues (e.g. the may be 
applied in a hospital or any health service provider company). The example is also adequate 
for Biomedical Engineering, as now-a-days, lots of studies have been developed in health field 
relating Covid-19 to mathematics and statistics models. Moreover, we consider presenting 
another example as a challenge for the readers to use and prove the results. 
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2.3. Concepts 

BT describes how to get the probability (a posteriori) of an event, based on the probability a 
priori, with new evidence. One of the many applications of BT is Bayesian Inference, an 
approach to statistical inference (Box and Tiao 1973). Consider two natural states: F 
(Favorable) meaning that a certain hypothesis under consideration is true and (Unfavorable) 
meaning the opposite, that is, that a certain hypothesis under consideration is false. Now, 
suppose that we have: 

 The probability a priori that anyone inside a population is in a favorable state F is 𝑃(𝐹), 
and the probability that he or she is in an unfavorable state 𝑈 is 𝑃(𝑈) = 1 − 𝑃(𝐹). 

 The probability of a T test being positive (+) when state Unfavorable applies is 𝑃(𝑇 + |𝑈) 
(this is a false positive). 

 The probability of a T test being negative (-) when state Favorable applies is 𝑃(𝑇 − |𝐹) 
(this is a false negative). 

In these circumstances, it is possible to know the probability that anyone inside this 
population, who got a positive result in that test, is actually in a Favorable state 𝑃(𝐹|𝑇 +) 
(meaning that it is true), or in an Unfavorable state 𝑃(𝑈|𝑇 +) (meaning that it is false) or when 
anyone who got a negative result in that test is actually in an Unfavorable state 𝑃(𝐹|𝑇 −) 
(meaning that it is false), otherwise 𝑃(𝑈|𝑇 −) (meaning that it is true). The problem will be 
solved by three approaches: Bayesian inference, Frequentist method, and lastly, Monte-Carlo 
simulation (Law 2015). In the analytical method, the expressions that teachers disseminate, 
and students memorize are as follows (Ross 2009; Walpole et al. 2012): 

𝑃(𝐹|𝑇 +) =
𝑃(𝑇 + |𝐹) × 𝑃(𝐹)

𝑃(𝑇 + |𝐹) × 𝑃(𝐹) + 𝑃(𝑇 + |𝑈) × 𝑃(𝑈)
 

 
 

(1) 

𝑃(𝑈|𝑇 +) =
𝑃(𝑇 + |𝑈) × 𝑃(𝑈)

𝑃(𝑇 + |𝑈) × 𝑃(𝑈) + 𝑃(𝑇 + |𝐹) × 𝑃(𝐹)
 

 

(2) 

 

𝑃(𝐹|𝑇 −) =
𝑃(𝑇 − |𝐹) × 𝑃(𝐹)

𝑃(𝑇 − |𝐹) × 𝑃(𝐹) + 𝑃(𝑇 − |𝑈) × 𝑃(𝑈)
 

 

(3) 

 

𝑃(𝑈|𝑇 −) =
𝑃(𝑇 − |𝑈) × 𝑃(𝑈)

𝑃(𝑇 − |𝑈) × 𝑃(𝑈) + 𝑃(𝑇 − |𝐹) × 𝑃(𝐹)
 (4) 

In this case, we consider that these expressions, once their logic is explained, should be 
programmed in a spreadsheet by the students themselves with the support of the teacher. 
Students should then concentrate on solving many application exercises. That is, instead of 
students spending time on the mechanics of resolution, they concentrate preferentially on the 
selection of the appropriate expression and on the interpretation of the results. The automatic 
method of calculation used also allows the performance of a quick sensitivity analysis of the 
results of each problem to different values of each of the input variables, helping to 
consolidate the concepts. The case described in the next paragraph, programmed in EXCEL, 
and named “Bayes test” illustrates this idea and can be downloaded here: 

https://www.dropbox.com/s/a8vl5enkbh46mhh/Bayes_test.xlsx?dl=0 

2.4. Application Case I 

Enter the application “Bayes_test.XLSX”. This application enhances the results of applying 
Bayes' theorem to the results of a test. The case solved on the three sheets, whose statement 

https://www.dropbox.com/s/a8vl5enkbh46mhh/Bayes_test.xlsx?dl=0
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is on the sheet “App title”, is based on (Gigerenzer 2015) with the following example: “The 
probability of any woman between 40 and 50 years of age to be sick from breast cancer is 
0.008 (prior probability). If any woman, who is ill from this disease is submitted to a test, the 
probability that the test results positive is 0.9 (true positive). If the woman does not suffer 
from this disease, the probability that the test results positive is 0.07 (false positive). Under 
these circumstances, what is the probability that any woman, whose test has resulted positive, 
suffers from cancer? And in the case the test has resulted negative?”. 

2.4.1.  Analytical (or Bayesian) method 

In the "Bayesian" sheet (Figure 1), the posterior probabilities (or a posteriori) are calculated 
from the direct application of the Expressions given by Bayes' theorem. Cell D4 introduces the 
prior (or a priori) probability that any woman, picked up randomly from a specific population, 
suffers from breast cancer or is ill (natural state favorable (F) to the hypothesis). Cell E4 
calculates the probability of not having cancer or being healthy (natural state unfavorable (𝑈) 
to the hypothesis). Cell D8 introduces the probability that the test will be negative (𝑇 −) when 
the hypothesis of being sick is true (false negative). Cell D7 calculates the probability that the 
test will be positive (𝑇 +) when the hypothesis of being sick is true (true positive). Cell E7 
introduces the probability that the test will be positive (𝑇 −) when the hypothesis of being 
sick is false (false positive). Cell E8 calculates the probability that the test will be negative (𝑇 +) 
when the hypothesis of being sick is false (true negative). 

 
Figure 1: Screen of the “Bayesian” sheet of the “Bayes” application 

Cells in columns C, D and E show the next calculation steps to obtain the posterior probabilities 
in column G. That is: 

 Cell G17 calculates the probability that a woman will have cancer when the test is 
positive 𝑃(𝐹|𝑇 +) = 0.09395 (true positive). 

 Cell G18 shows the probability of a woman not having cancer after all when the test was 
positive 𝑃(𝑈|𝑇 +) = 0.90605 (false positive). 

 Cell G24 calculates the probability that a woman will eventually have cancer when the 
test is negative 𝑃(𝐹|𝑇 −) = 0.00087 (false negative). 

 The G25 cell calculates the probability that a woman will not actually have cancer when 
the test is negative 𝑃(𝑈|𝑇 −) = 0.999913 (true negative). 
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2.4.2. Frequentist method 

On the sheet “Frequentist” (Figure 2), the natural frequencies are calculated according to the 
following logical reasoning: In every 1,000 women (cell E5), 8 will effectively have cancer 
(0.008 x 1,000 = 8, cell C6) and 992 will be healthy (0.992 x 1,000 = 992, cell G6). Once the test, 
which presents 10% of false negatives, applied to 8 women who are sick with cancer, will give 
the following results: The existence of cancer is confirmed in 0.9 x 8 = 7.2 women (cell B8) and 
is not confirmed in 0.1 x 8 = 0.8 women (cell D8). In turn, the same test that presents 7% of 
false positives, applied to 992 women who are healthy, will give the following results: The 
absence of cancer will be confirmed in 0.93 x 992 = 922.56 women (cell H8) and 0.07 x 992 = 
69.44 women (cell F8) will receive a (false) result of having cancer. So, 7.2 / (7.2 + 69.44) x 100 
= 9.39% of women (cell E12) who received a positive mammogram will have cancer and 0.8 / 
(0.8 + 922.56) x 100 = 0.09% (cell E13) will be healthy. 

 
Figure 2: Screen of the “Frequentist” sheet of the “Bayes” application 

2.4.3. Monte-Carlo numerical simulation method 

On the “Simulation” sheet (Figure 3), the results of n = 1,000 random tests are simulated, and 
the Monte-Carlo method calculates the posterior probabilities (or a posteriori). Let us now 
leave the previous example and refer to a generic case of a population that has a certain 
characteristic, or property or is in a certain state (immunity to a disease, for example). Suppose 
that this characteristic exists in the proportion of 1 in 4 elements – or in 25% of the population 
(cell D4 of the “Bayesian” sheet = 0.25). This "frequency" is now referred to as "a priori 
probability" for the purposes of inference. Suppose further that the test / examination 
method used is not entirely reliable and that it generates a proportion of 20% false negatives 
(cell D8 of the “Bayesian” sheet = 0.2) and 10% false positives (cell E7 of the sheet “Bayesian” 
= 0.1). 
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Figure 3: Screen of the “Simulation” sheet of the “Bayes” application 

Once on the “Simulation” sheet: 

Column C creates a large sample1, for example, 1,000 elements between lines 8 and 1007, 
taken from this population that has a proportion of elements immune to the disease 
(favorable natural state) equal to 0.25 and, therefore, a proportion of non-immune elements 
(unfavorable natural state) equal to (1 - 0.25) = 0.75. 

Each cell in this column C was programmed with the following logic (line 8, for example): = IF 
(RAND () <= $ C $ 5;” F”;” 𝑈”). That is, we generate a random number between 0 and 1 (RAND 
() function) and if it is less than or equal to 0.25, the function returns “F” (favorable, i.e., the 
element is immune to the disease), if it is greater than 0.25 and less than 1, the function 
returns “𝑈” (unfavorable, i.e., the element is not immune). Cell C5 shows the a priori 
probability (0.25) entered in the “Bayesian” sheet. C1 and C6 cells validate the existence of F 
in range C8: C1007. Cell C1 counts how many F´s there are in the sample and cell C6 calculates 
the correspondent proportion. 

C5, D5 and E5 cells were assigned, respectively, to the a priori probability, false negative 
probability and false positive probability, whose values were entered in the “Bayesian” sheet 
in cells D4, D8 and E7, respectively. 

In columns D and E, we simulate the results of a test / exam that is not entirely reliable. In 
fact, the diagnosis was sometimes correct: (𝑇 + |𝐹) (true positive) or (𝑇 − |𝑈) (true 
negative); other times incorrect: (𝑇 − |𝐹) (false negative - column D) or (𝑇 + | 𝑈) (false 
positive - column E). Cells D1 and D6 validate the existence of 𝑇 − in range D8: D1007. Cell D1 
counts how many 𝑇 − there are in the sample and cell D6 calculates the correspondent 
proportion. E1 and E6 cells validate the existence of T + in the E8: E1007 field. Cell E1 counts 
how many 𝑇 + are in the sample and cell E6 calculates the correspondent proportion. 

In column D, to simulate false negatives, cell D8, e.g., was programmed with the following 
logic: 

= IF (C8 = " 𝑈 "; "-"; IF (RAND () <= $ D $ 5; "T -"; "-")) 

                                                      

 

 

 
1 The larger the sample, the smaller the number of runs in a Repeater will be necessary to obtain the same degree of precision (sampling 
error) and vice versa. 
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That is, if an element is not immune to the disease ("𝑈 " in column C), the function returns "-
". Otherwise, if the element is in fact immune to the disease (“F” in column C), the function 

generates a random number between 0 and 1 (RAND () function). If the result is  0.2 (cell D5), 
the function returns 𝑇 − (false negative). Otherwise, the function returns “- “. 

In column E, to simulate false positives, cell E8, e.g., was programmed with the following logic: 

= IF (C8 = "F"; "-"; IF (RAND () <= $ E $ 5; "T +"; "-")) 

That is, if an element is immune to the disease ("F" in column C), the function returns "-". 
Otherwise, if the element is in fact not immune to the disease (“𝑈” in column C), the function 

generates a random number between 0 and 1 (RAND () function). If the result is  0.1 (cell E5), 
the function returns 𝑇 + (false positive). Otherwise, the function returns “- “. 

In columns G, H, I and J the test results are obtained:  

Cell G8, e.g., was programmed with the following logic: = IF (AND (C8 = "F"; D8 = "T -"; E8 = "-
"); 1; 0). That is, if the element is immune to the disease (cell C8 = “F”) and if the test is negative 
(cell D8 = 𝑇 −) and not positive (cell E8 = “- “), the function returns 1 (FN - False Negative) and 
0 otherwise. 

Cell H8, e.g., was programmed with the following logic: = IF (AND (C8 = " 𝑈 "; D8 = "-"; E8 = "-
"); 1; 0). That is, if the element is not immune to the disease (cell C8 = “𝑈”) and if the test 
result is correct (cell D8 = “- “and cell E8 = “- “), the function returns 1 (TN - True Negative) 
and 0 otherwise. 

Cell I8, e.g., was programmed with the following logic: = IF (AND (C8 = " 𝑈 "; E8 = "T +"; D8 = 
"-"); 1; 0). That is, if the element is not immune to the disease (cell C8 = “𝑈”) and if the test is 
positive (cell E8 = T +) and non-negative (cell D8 = “- “), the function returns 1 (FN - False 
Negative) and 0 otherwise. 

Cell J8, e.g., it was programmed with the following logic: = IF (AND (C8 = "F"; E8 = "-"; D8 = "-
"); 1; 0). That is, if the element is immune to the disease (cell C8 = “F”) and if the test result is 
correct (cell E8 = “- “and cell D8 = “- “), the function returns 1 (FN - False Negative) and 0 
otherwise. 

Cells G3 to J3 count how many ones were obtained in columns G, H, I and J, respectively. Cells 
G4 to J4 count the proportions of False Negatives (FN) or 𝑃(𝐹|𝑇 −), True Negatives (TN) or 
𝑃(𝑈|𝑇 −), False Positives (FP) or 𝑃(𝑈|𝑇 +) and True Positives (TP) or 𝑃(𝐹|𝑇 +). These results 
can also be read in yellow cells L17, L18, L11 and L10, respectively, to be easily compared with 
the results obtained by the analytical method (cells M17, M18, M11 and M10). 

By repeating the calculation of the yellow cells, a large enough number to obtain statistical 
significance, their expected values tend to the same results obtained by both the Bayesian and 
Frequentist methods. 

A second application case, showing the importance of the subject to engineering is described 
in the next section. 

3. Application Case II 

A complex electronic system fails in several ways. One of them - the failure mode X - occurs in 
the proportion of 1/4. It is intended to carry out its monitoring by means of a self-diagnostic 
module, which, during reliability tests, correctly diagnosed 98% of the occurrences of this 
failure mode X (2% false negatives, Bayesian sheet D8 cell) and misdiagnosed 1% of other 
failures as failure mode X (false positives, Bayesian sheet cell E7). How reliable is the module? 
Answers: The probability of the module correctly diagnosing failure mode X when it occurs is 
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0.9703 (cell G17). The probability of the module diagnosing (or not) another failure mode 
when in fact it is not failure mode X is 0.9933 (G25 cell of the Bayesian sheet). 

4. Discussion and Conclusions 

It is demonstrated throughout this article that a theorem with a complicated statement, and 
an even more complicated mathematical representation, can be described in a simpler way 
using pure logic through two methods: the frequentist and the numerical simulation – the 
later even more intuitive than the former. This approach to a law that we observe in so many 
circumstances of the Engineering activity, also present in natural sciences, and which causes 
so much difficulty to young students during their academic career, can after all, be described 
using the same logic that was certainly followed by authors, when they interpreted the results 
of their experiments, although taking a lot of time and effort, in contrast to the ease today 
provided by computational media. We highlight the method of logic applied in the 
construction of a numerical simulation model can be used in the demonstration of other 
statistical laws, for example, the analytical expressions that describe the Central Limit 
Theorem or the Confidence Intervals of the mean and standard deviation of continuous or 
discrete variables, or the Covariance between two random variables. In conclusion, we 
strongly recommend the use of the numerical simulation technique for the construction of 
models that imitate the real world with just-enough precision and save time and money. While 
this technique is already trivial in many areas of Engineering and Management, it is not, 
however, in Statistics and hence our interest in the dissemination of this article. 
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