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Abstract 
The use of underwater autonomous vehicles has been growing, allowing the 
performance of tasks that cause inherent risks to Human, namely in inspection 
processes near to structures. With growth in usage of systems with autonomous 
navigation, visual acquisition methods have also gotten more developed because, 
they have appealing cost and they also show interesting results when operate at a 
short distance. It is possible to improve the quality of navigation through visual SLAM 
techniques which can map and locate simultaneously and its key aspect is the 
detection of revisited areas. These techniques are not usually applied to underwater 
scenarios and, therefore, its performance in environment is unknown. The paper 
presents a more reliable navigation system for underwater vehicles, resorting to 
some visual SLAM techniques from literature. The results, conducted in a realistic 
scenario, demonstrated the ability of the system to be applied to underwater 
environment. 
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1. Introduction 

The growing use of underwater autonomous vehicles (AUV) is related with the fact of its actual 
features (Wynn et al. 2014) allow its application in tasks that may involve risks for Human, 
such as environment monitoring, inspection and demining. However, to ensure the use of an 
AUV in diverse applications, these vehicles must be able to navigate autonomously and the 
data must be obtained accurately (Bosch et al. 2016). 

Since the underwater environment is unknown, we have an increase effort in exploitation and 
development of techniques to allow the navigation of underwater vehicles. In this context, 
Simultaneous Localization and Mapping (SLAM) techniques (Paull et al. 2014) has been arise 
to help in autonomous navigation namely in unstructured environments and when the initial 
information is poor. In this technique the robot constructs a coherent map of its environment 
while, at the same time, determines its location within that same map. However, this 
approach have to deal with some problems (Aulinas et al. 2008), namely the data association 
that occur when the number of possible hypotheses that identify the landmark grow. 

The adversities of the underwater environment reduce the sensors to use. In this 
environment, the radio signal only propagates in short distances that makes the using of 
Global Positioning System (GPS) and techniques based in Wi-Fi communications less 
appealing. Although expensive and with some possible errors, the acoustic sensors present 
better performance in this environment. However, the autonomous vehicles are crucial in 
depth applications, such as monitoring and inspection of underwater structures. In this 
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context, the visual sensors have been an important focus to ensure that the vehicles can 
execute close-range missions autonomously and in real-time. Although the images could be 
affected by the poor visibility and light attenuation (Prados Gutiérrez 2013), have been applied 
some techniques to restore and to enhance the quality of imaging (Corchs and Schettini 2010; 
Pérez-Alcocer et al. 2016). 

The SLAM approach with visual sensors (Pi et al. 2014) has the main goal to estimate the 
camera motion while reconstructs the environment. This technique assumes the extraction of 
features to estimate the position of the vehicle (Taketomi, Uchiyama, and Ikeda 2017) and for 
that presents two main methodologies based in: 

 Filters – the motion is estimated with all frames, processing by a filter; 

 Keyframes – the motion is estimated based some frames previously selected. 

In addition, is common to use Bundle Adjustment (BA) to adjust the trajectory in certain 
moments, depending of the implementation. Moreover, to limit the estimation error, the 
vehicle must be able to recognize revisited areas - loop closure detection (Lowry et al. 2016). 
However, with visual systems is considered the greatest challenge since it implies the 
association of nonconsecutive images. As solution comes up the visual vocabulary concept, 
considered an efficient approach (Nister and Stewenius 2006), to determine the similarity 
between images, namely the Bag-of-Words (BoW) technique (Nicosevici and Garcia 2012; 
Law, Thome, and Cord 2014). The vocabulary can be created offline or online. In the first case, 
it is constructed a priori from a large set of training images. The online approach does not 
require human intervention: it is constructed according to robot motion. This approach stands 
out by accurately modeling the objects and scenes present in the surroundings and by being 
constructed as visual information becomes available. 

This paper presents a robust, accurate and efficient visual system for simultaneous navigation 
and mapping in underwater environment. Thus, it is possible to contribute for a location of 
vehicles more reliable and safer and, therefore, to allow the use of AUV in long-term 
operations in an unknown environment. 

Thus, this the paper is organized as follows: section 2 presents the steps and its description to 
obtain the developed system. Afterwards, the results obtained with the system in underwater 
environment are illustrate in section 3. Moreover, this section presents a comparative analysis 
between vocabulary and Bundle Adjustment approaches to detect revisited areas. Finally, in 
section 4 are discussed the major conclusions of this work. 

2. Visual Navigation in Close-Range Scenarios 

To develop the visual navigation system for underwater vehicles, the more appropriate SLAM 
technique of the literature was selected. After that, to recognize revisited areas and, so, to 
allow a more reliable motion estimation, a vocabulary method was developed. Figure 1 
presents the modules that compose the developed system. 

 
Figure 1: Overview of the steps for final system 

A set of visual stereo SLAM techniques was analyzed based on the performance that is 
expected from the literature. These techniques are the following: RTAB-Map (Labbé and 
Michaud 2014), S-PTAM (Pire et al. 2015), and ORB-SLAM2 (Mur-Artal, Montiel, and Tardos 
2015). The first implementation allows the use of external odometry methods, such as viso2, 
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to estimate 6DOF motion, but is not fit to pure rotations and it assumes that the camera is 
always at the same high. Moreover, it resorts to bucketing technique to ensure that the 
features extraction is uniform over entire image. The S-PTAM divides de SLAM problem into 
parallel tasks: tracking (detects and matches features to estimation the camera motion) and 
map optimization (removes the outliers). The ORB-SLAM2 uses the same features not only to 
map and tracking but also for local recognition, that allows that the system could be more 
efficient and reliable. These two methods use a keyframe-based approach for motion 
estimation, that avoids a computational growing. For loop-closure detection, the RTAB-MAP 
and ORB-SLAM2 use vocabulary approaches, that evaluate the similarity between the current 
frame and the others. The S-PTAM only performs an iterative bundle adjustment. The ORB-
SLAM2 implementation uses an offline vocabulary and RTAB-Map constructs a vocabulary as 
the images become available. 

These implementations were compared qualitatively and quantitatively to determined what 
of them is more fit to the intended context (real-time conditions). Thus, the quality of the 
motion estimation (Euclidean error), Central Processing Unit (CPU) and Random-Access 
Memory (RAM) utilization and the processing time were evaluated. For that some datasets 
online available were used, namely KITTI dataset (Geiger, Lenz, and Urtasun 2012) that depicts 
the outdoor environment (acquired by a car in urban areas and highway), see Figure 2. This 
dataset includes ground-truth of some trajectories and loop-closure situations. 

 
Figure 2: Illustrative example of the KITTI dataset: (a) urban area and (b) highway 

(Gaspar et al. 2018) 

Figure 2 illustrates the behavior obtained by the implementations to the KITTI dataset 
(sequence 05). 

The ORB-SLAM2 is the only that estimates all camera positions, detects the loop-closures and, 
consequently, adjusts its trajectory. This implementation presents lower errors between 
estimated trajectory and ground-truth. The RTAB-Map, with viso2 to motion estimation, tries 
to replicate the motion but with some deviations, that can be explained by the susceptibility 
to sudden rotations of the camera. The S-PTAM is far from to achieve the intended trajectory, 
since frames at the beginning were lost. Thus, it is not possible to conclude about the loop-
closure detection to relation these two last implementations. 
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Figure 3: Trajectories obtained with KITTI dataset (sequence 05) in real-time 

conditions by visual SLAM techniques (Gaspar et al. 2018) 

Based on the comparative analysis (Gaspar et al. 2018), with others sequences of KITTI and 
with others datasets online available (Stereo_20Hz and MIT Stata Center), was evident that 
the ORB-SLAM2 implementation was the best in the motion estimation and computational 
requirements – crucial in real-time operations. In terms of processing time, RTAB-Map and S-
PTAM give better results. However, as they do not use all the frames for the motion 
estimation, the obtained values are insignificant. Moreover, these implementations have 
worst performance in Euclidean error and CPU. The S-PTAM only estimated correctly the 
motion in simple trajectories (without direction changes) and it is the approach that presents 
the highest computational requirements. Finally, in a qualitative way, the ORB-SLAM2 is the 
only that is suitable for the reliable recognition of revisited areas (loop-closure detection). 
Table 1 presents an overview of the performance obtained by the different methods. 

 RTAB-Map S-PTAM ORB-SLAM2 

Euclidean error  - + ++ 
Processing time  - + ++ 

CPU  + - ++ 
RAM                     +                      ++ - 

Table 1: Performance obtained by the implementations related to some 
parameters. (++) represents the better result and (-) the worse 

Moreover, the behavior in ideal conditions - offline processing - was also considered. As 
expected, when the ratio between the processed frames and the acquired frames is higher, 
the performance is better. Over these conditions, RTAB-Map and S-PTAM significantly 
improved their behavior by detecting existing loops, see Figure 4. 
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Figure 4: Trajectories obtained with KITTI dataset (sequence 05) in ideal conditions 

by visual SLAM techniques (Gaspar et al. 2018) 

In general, the ORB-SLAM2 and S-PTAM implementations are the most complete. The S-PTAM 
emphasizes the minimization of the dependency between two threads and the use of binary 
features that decrease the computational requirements (increasing the detection process). 
The ORB-SLAM2 proves the efficiency and effectiveness of the quality of the loop detection. 
The possibility to adapt the vocabulary to the context and the performance of motion estimate 
in real-time, highlights the ORB-SLAM2 implementation. Thus, according to intended 
applicability this implementation was selected to underwater context. 

To evaluate the selected SLAM technique and, consequently, the impact of the visual 
vocabulary in underwater environment, data were acquired by a visual system (composed by 
two cameras and two lasers) in a scenario that simulates this environment. Moreover, two 
anchors were placed as a control point and distance information points to evaluate 
(quantitatively) the obtained motion estimation were marked. Figure 5 depicts the data 
acquisition scenario. 

 
Figure 5: Data acquisition system and scenario 

Thus, some trajectories to evaluate the behavior of the ORB-SLAM2 in underwater 
environment were acquired. The trajectories present some direction changes and distance to 
the ground was kept, as possible. Loop-closure situations were included to assess the visual 
vocabulary method developed and, consequently, understand the impact of these approaches 
in the performance of the motion estimation. 
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3. Results and Discussion 

Figure 6 illustrates a realized trajectory in the underwater scenario to verify the performance 
of the ORB-SLAM2 with the developed vocabulary method in this environment. The system 
starts in left side - point i - and it moves about 2 meters (passing by the anchors). Here, it 
performs a direction change (loop-closure situation) and, after, moves in diagonal direction 
with a direction change up to near to initial position - point f – but without loop situation in 
this point. 

 
Figure 6: Illustrative example of the realized trajectory by visual system in 

underwater environment 

In Figure 7 is visible a good motion estimation obtained by the ORB-SLAM2. However, this 
estimation does not include the intended initial point, because the initial requirements of this 
implementation, at this moment, were not satisfied. It is also noticeable that a direction 
change – point mid - near to final position was wrong. However, this aspect does not present 
relevance, because the trajectory ends close to initial point without loop detection, as 
expected. 

 
Figure 7: Underwater xyz trajectory obtained by ORB-SLAM2 method 

The loop-closure situations present in this trajectory were detected (after the direction 
changes). In addition, the z-axis value is kept and the obtained scale was suitable as visible in 
Table 2. 
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 Real distance 
(m) 

Estimated distance 
(m) 

Pinitial - Pmid 2.00 1.60 
Pinitial - Pfinal 0.50 0.40 

Table 2: Quantitative performance obtained by the ORB-SLAM2 method in 
underwater environment 

To analyze the influence of a vocabulary approach against the use of bundle adjustment, this 
experiment was conducted with S-PTAM implementation, see Figure 8. 

As visible, a low performance was obtained, since the motion estimation was not as desired 
and the revisited areas were not detected. Therefore, the obtained scale is far to real values 
and it was not intended that, in the ends, the x and y values been similar. Besides that, the 
final point is closer to the initial point than desired. Thus, to use only iteratively Bundle 
Adjustment is not able to detect revisited areas along to the camera motion. 

 
Figure 8: Underwater xyz trajectory obtained by S-PTAM method 

4. Conclusions 

Several visual SLAM methods that are typically applied to the navigation of mobile robots were 
analyzed in this paper. Results conducted that the ORB-SLAM2 is the more suitable technique. 
The comparative study of these methods was important to develop the final system, since 
that allow to achieve better results. The ORB-SLAM2 also proved its good performance in 
underwater scenario, since that could be following the motion with correct quantitative 
information. Presented low errors, namely 40cm between the initial and mid points and 10cm 
between initial and final positions. Moreover, it detected all loop-closure situations, adjusting 
its trajectory at these moments. This fact proved that the developed vocabulary method 
presented a good performance. 

In addition, it was visible that the iteratively Bundle Adjustment is not enough to recognize 
revisited areas since that the S-PTAM does not detected any loop. Thus, the importance of 
visual vocabulary approach to increase navigation performance was proved. So, it is possible 
to use the presented system in a real environment, allowing operational flexibility. 

In future, it is intended to increase the robustness of the system, increased the number of 
experiences in underwater environment and to improve the computational 
requirements of the ORB-SLAM2 method. 
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