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 Whispers are common and essential for secondary 
communication. Nonetheless, individuals with aphonia, including 
laryngectomees, rely on whispers as their primary means of 
communication. Due to the distinct features between whispered 
and regular speech, debates have emerged in the field of speech 
recognition, highlighting the challenge of effectively converting 
between them. This study investigates the characteristics of 
whispered speech and proposes a system for converting 
whispered vowels into normal ones. The system is developed 
using multilayer perceptron networks and two types of generative 
adversarial networks. Three metrics are analyzed to evaluate the 
performance of the system: mel-cepstral distortion, root mean 
square error of the fundamental frequency, and accuracy with f1-
score of a vowel classifier. Overall, the perceptron networks 
demonstrated better results, with no significant differences 
observed between male and female voices or the 
presence/absence of speech silence, except for improved 
accuracy in estimating the fundamental frequency during the 
conversion process. 

 

1. Introduction 
The human voice serves as a critical instrument for communication, enabling the transmission 
of information and ideas while fostering social connections. In certain contexts, whispering 
serves as an alternative mode of communication, typically utilized for private conversations in 
public settings via cell phone, or in quiet environments such as libraries, hospitals, and 
meeting rooms. In addition, individuals who suffer from conditions such as vocal fold paralysis, 
vocal nodules, and other related afflictions may experience difficulty producing normal speech 
as a result of partial or complete absence of vocal fold vibrations (i.e.,voicing) (Sharifzadeh et 
al. 2017). 
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As a result, recent years have seen increased interest in the study of whispered speech. 
Furthermore, whispered speech typically exhibits a lower sound pressure level than normal 
speech, resulting in a lower signal-to-noise ratio (SNR). This characteristic poses challenges for 
speech processing, particularly for speech recognition, as whispered speech is generally more 
difficult to analyze and identify than normal speech (Grozdi and Jovii 2017). 
Although the need for processing whispered speech is becoming increasingly important, the 
amount of research on this topic is relatively low. Traditional approach for speech analysis-
synthesis such as MELP (Mixed Excited Linear Prediction), CELP (Code Excited Linear 
Prediction) and LPC (Linear Prediction Coding) have been commonly used in converting 
whisper to normal speech (Morris and Clements 2002; Sharifzadeh, McLoughlin, and Ahmadi 
2010). However, an analysis-synthesis model requires fundamental frequency estimating from 
whispered speech.  Unfortunately, whispered speech, characterized by the absence of vocal 
cord vibration, results in the absence of a fundamental frequency. As far as we currently know, 
there is no efficient method available for accurately estimating the fundamental frequency 
from whispered speech (Gao et al. 2021). 
Recently, machine learning methods have also been used with great success, as in the case of 
multilayer perceptron network (Hinton et al. 2012). Among various MLP topologies, 
generative adversarial networks (GANs) (Goodfellow et al. 2020) have gained popularity in the 
field of speech processing (Wali et al. 2022), showing significant improvements in 
performance and quality for applications such as voice conversion (Dhar, Jana, and Das 2022), 
voice enhancement (Pascual, Serra, and Bonafonte 2019; Yu et al. 2021), voice synthesis 
(Saito, Takamichi, and Saruwatari 2018) and notably, the focus of this study, whisper-to-
speech conversion (Gao et al. 2021; Shah et al. 2018; Ardaillon, Henrich, and Perrotin 2022). 
Therefore, despite the limitations inherent in traditional approaches to converting whispered 
speech to normal speech, as previously discussed, the aim of this study is to develop a system 
that converts whispered vowels to normal speech using neural models approach, specifically 
MLP and GAN networks, the architecture proposed by referenced paper (Shah et al. 2018). To 
achieve this, we utilized the European Portuguese speech database from the Dysphonic to 
Natural Voice Reconstruction project (DyNaVoiceR). Some works related to this project are: 
manipulation of the fundamental frequency micro-Variations using a fully parametric and 
computationally efficient speech model (J. P. Silva et al. 2020) and flexible parametric 
implantation of voicing in whispered speech under scarce training data (J. Silva, M. Oliveira, 
and Ferreira 2021). 
The remainder of this paper is structured as follows: Section 2 provides details about the 
speech database and methodology, which is divided into data pre-processing, neural network 
models, and performance metrics. Section 3 gives experimental results and discussion. Finally, 
Section 4 concludes this paper. 

2. Methodology 
In this paper, we first provide a detailed description of the speech database used in the study. 
We then present the proposed methodology, which is divided into speech signal feature 
extraction, neural network architectures, and performance metrics. 
2.1. Database 
The speech database used in this study was obtained from the DyNaVoiceR project, which 
focuses on advanced assistive technology to help patients affected by voice dysphonia, 
including temporary or permanent aphonia, to communicate more effectively and 
comfortably. This database was developed by European institutions, such as the Faculties of 
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Engineering and Medicine at the University of Porto The dataset is balanced, comprising 
recordings of 20 healthy speakers, evenly split between 10 males and 10 females, in .wav 
audio format at a sampling rate of 22,050 Hz. This balance is crucial for enabling fair and 
reliable gender-based performance comparisons in the results. For each speaker, recordings 
of sustained oral vowels were made in both normal and whispered speech. The database also 
includes manual phonetic annotation for each recording, allowing for the identification and 
localization of each phoneme. There are a total of 9 oral vowels used in European Portuguese, 
in sustained form (as shown in Table 1) (M. A. Oliveira 2020). 

Vowel Example 

/i/ ilha 

/ê/ peso 

/é/ ela 

/á/ água 

/â/ amarelo 

/ó/ óculos 

/ô/ ovo 

/u/ uva 

/e/ sede 
Table 1: Sustained phonemes in European Portuguese from the DyNaVoiceR 

project database. 

Table 2 presents the separation of the 9 oral vowels into four groups used in the experiments 
to evaluate the performance of the conversion networks from whispered to normal speech. 
Each group was augmented with a variety of vowels, arbitrarily chosen, to verify the system's 
performance. By categorizing the vowels into groups and introducing this diversity, we aim to 
evaluate the effectiveness of the conversion networks when dealing with vowels 
characterized by diverse phonetic and articulatory characteristics. Essentially, the goal is to 
determine whether the conversion process performs equally well on vowels that exhibit 
different speech sounds and vocal tract configurations. This experiment serves as a means to 
assess how effectively the conversion networks can accommodate these variations in speech 
characteristics when transforming whispered speech into a more normal, audible form. 
 

Group Variety amount Vowels 

1 1 /á/ /â/ 

2 2 /á/ /â/ /ê/ /é/ 

3 3 /á/ /â/ /ê/ /é/ /ó/ /ô/ 

4 5 /á/ /â/ /ê/ /é/ /ó/ /ô/ /i/ /u/ /ú/ 
Table 2: Groupings of vowel phonemes. 

In addition to separating the database by vowels, it is also divided by gender (men and women) 
and signal speech without silence. The main difference between female and male voices is the 
fundamental frequency. Adult men typically have larger and thicker vocal folds that vibrate 
between 80 and 150 Hz, while women generally have smaller and thinner vocal folds that 
vibrate between 150 and 250 Hz (Behlau 2001). 
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2.2. Feature Extraction 
Firstly, silent intervals in the database are removed to study their impact on the performance 
of the conversion system. These intervals are manually removed using the annotations 
provided in the database. 
For the extraction of acoustic features, a parametric vocoder named AHOCODER (Erro et al. 
2011) was utilized. The sampling rate of the speech signals was reduced from 22.050Hz to 
16.000Hz to enable the use of this tool. The 40-dimensional Mel Frequency Cepstral 
Coefficients (MFCCs), which include the 0𝑡𝑡ℎ  coefficient, and the logarithm of the fundamental 
frequency, log(𝐹𝐹0), were extracted from the whispered and normal speeches using a 25ms 
window and 5ms frameshift. 
The log(𝐹𝐹0) plot are shown in Figure 1. It can be noticed that the log(𝐹𝐹0) in the whispered 
signal has some impulses but most of the time it is zero, because the lack of vocal folds 
vibration causes absence of the fundamental frequency and its harmonics. After feature 
extraction, these features will be used to train and evaluate a system that converts whispered 
speech to normal speech. 

 
                                (a)                                                                                                (b) 

 
                                (c)                                                                                                (d) 

Figure 1: The logarithm of the fundamental frequency of normal and whispered 
speech: (a)-(b) without silence removed and (c)-(d) with silence removed. 

2.3. Networks architectures 
A Generative Adversarial Network (GAN) is a machine learning framework introduced by Ian 
Goodfellow, where two neural networks engage in a competitive, zero-sum game, with one 
network's success leading to the other network's failure (Goodfellow et al. 2020). Figure 2 
illustrates the GAN architecture. A whispered speech signal is used as input to the Generator 
network, which aims to produce, in its output, a signal similar to normal speech. The 
Discriminator network tries to distinguish between the two speech signals, real and fake 
speech, with its response used for parameter adjustments of the networks. Thus, the 
Generator network learns to generate a reconstructed speech close to normal speech. 
However, training GANs can encounter challenges such as mode collapse, where the 



Neural network models for whisper to normal speech conversion 
Cézar F. Yamamura, Paulo R. Scalassara, Marco A. Oliveira, Aníbal J. S. Ferreira 

U.Porto Journal of Engineering, 11:1 (2025) 116-129 120 

Generator produces limited or repetitive outputs, and training instability, where the networks 
fail to converge or exhibit oscillatory behavior. 

 
Figure 2: GAN architecture for Whispered Speech Reconstruction. 

To address the challenges of mode collapse and instability commonly encountered during 
GAN training, we also used DiscoGAN, the architecture proposed by (Shah et al. 2018) and 
illustrated in Figure 3. In the context of two domains, whispered speech (𝑊𝑊) and normal 
speech (𝑆𝑆), features are mapped (𝑋𝑋𝑆𝑆 and 𝑋𝑋𝑊𝑊) for the two different speech types. The model 
uses two generators (𝐺𝐺𝑊𝑊𝑆𝑆 and 𝐺𝐺𝑆𝑆𝑊𝑊) along with two discriminators (𝐷𝐷𝑊𝑊 and 𝐷𝐷𝑆𝑆). 𝐺𝐺𝑊𝑊𝑆𝑆 
transforms 𝑋𝑋𝑊𝑊 into 𝑋𝑋𝑊𝑊𝑆𝑆 (converted features of normal speech) in such a way that 𝑋𝑋𝑊𝑊𝑆𝑆 
becomes indistinguishable from the authentic samples 𝑋𝑋𝑆𝑆. Similarly, 𝐺𝐺𝑆𝑆𝑊𝑊 accomplishes this 
task. The discriminator 𝐷𝐷𝑆𝑆 attempts to distinguish between 𝑋𝑋𝑆𝑆 and 𝑋𝑋𝑊𝑊𝑆𝑆 while 𝐷𝐷𝑊𝑊 performs a 
similar function for𝑋𝑋𝑊𝑊. 

 
Figure 3: DiscoGAN architecture for discriminators outputs. 

2.4. Conversion system 
For the whispered to normal speech conversion, we used two neural networks as shown in 
Figure 4 The first network maps the normal MFCC (MFCCn) to the corresponding whispered 
MFCC (MFCCw), taking into account the temporal differences between them. To handle these 
temporal differences, we used Dynamic Time Warping (DTW), which is especially important 
under parallel training scenarios for the network to generate a normal MFCC estimate 
(MFCCn’) in the inference phase. 
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Figure 4: Block diagram of (a) MFCCs to MFCCn' Conversion Network I and (b) 

MFCCn' to 𝐹𝐹0𝑛𝑛 Conversion Network II. 

The second network uses both MFCCn and 𝐹𝐹0𝑛𝑛 (normal 𝐹𝐹0)  as inputs during its training phase. 
In its inference phase, the output of the first network, MFCCn', is used as input to generate 
the 𝐹𝐹0 estimation (𝐹𝐹0𝑛𝑛′). 
Therefore, three different architectures of neural networks were utilized: Multilayer 
Perceptron Networks (MLP), GAN Networks, and DiscoGAN Networks.  
These three networks follow an identical architecture with three hidden layers. Having 
uniform architecture aids in more equitably analyzing the advantages of adversarial training. 
Each hidden layer contains 512 neurons with Rectified Linear Unit (ReLU) activation, while the 
output layer of the first network has a linear activation function. The discriminators of the 
GAN, DiscoGAN, and the second network also have three hidden layers with ReLU activation. 
Their output layer uses a sigmoid activation function since it has only one output. 
All networks are developed in Python and are trained for 100 epochs, using batch sizes of 1000 
samples, as suggested in (Shah et al. 2018). The parameters are optimized using Adam 
optimization, with a learning rate of 0.0001. 
2.5. Objective metrics 
We have applied Mel Cepstral Distortion (MCD), Root Mean Square Error (RMSE) and a neural 
vowel classifier to evaluate the effectiveness of whisper to normal speech conversion system. 
The traditional MCD measure is used here which is given by (Parmar et al. 2019): 
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 (1) 

where 𝑀𝑀𝐹𝐹𝑀𝑀𝑀𝑀𝑛𝑛𝑖𝑖 and 𝑀𝑀𝐹𝐹𝑀𝑀𝑀𝑀𝑐𝑐𝑖𝑖 are the 𝑖𝑖𝑡𝑡ℎ MFCCs of the reference and converted normal speech, 
respectively, and 𝑁𝑁 represents the dimension of the cepstral coefficient feature. The MCD 
measures the mean squared difference between the two sets of MFCCs and is a commonly 
used metric with respect to the spectral features to evaluate the performance of speech 
conversion systems. A lower MCD value indicates a better system performance, as it suggests 
that the converted speech is more similar to the reference speech. 
To measure the RMSE of log(𝐹𝐹0), the actual reference speech and the converted speech 
signals are first aligned in time using the Dynamic Time Warping (DTW) algorithm. This 
alignment results in pairs of voiced-voiced, voiced-unvoiced, unvoiced-voiced, and unvoiced-
unvoiced segments. We only consider the voiced-voiced pairs for computing the RMSE of the 
log(𝐹𝐹0). The RMSE of the log(𝐹𝐹0) is calculated as follows (Parmar et al. 2019): 

𝑅𝑅𝑀𝑀𝑆𝑆𝑅𝑅(log(𝐹𝐹0)) = ���log�𝐹𝐹0𝑛𝑛𝑖𝑖� − log�𝐹𝐹0𝑐𝑐𝑖𝑖��
2

𝐾𝐾

𝑖𝑖=1

 (2) 

where 𝐹𝐹0𝑛𝑛𝑖𝑖 and 𝐹𝐹0𝑐𝑐𝑖𝑖 represent the reference and converted log(𝐹𝐹0) values at time frame 𝑖𝑖, 
respectively, and 𝐾𝐾 is the total number of voiced frames. A lower RMSE value indicates a 
better performance of the conversion system. 
The final metric used to evaluate the whispered to normal speech conversion system is the 
vowel classification performance, depicted in Figure 5. The classifier is a multilayer perceptron 
(MLP) with three hidden layers, each containing 128 neurons with Rectified Linear Unit (ReLU) 
activation. The network is trained with both MFCCn and 𝐹𝐹0𝑛𝑛, resulting in a 41-neuron input 
layer. The output layer employs a sigmoid activation function and has a number of neurons 
corresponding to the number of vowels in Table 2. The performance of the system is evaluated 
based on the classification accuracy and f1-score achieved by the vowel classifier. 

 
Figure 5: Block diagram of vowels classifier. 

 



Neural network models for whisper to normal speech conversion 
Cézar F. Yamamura, Paulo R. Scalassara, Marco A. Oliveira, Aníbal J. S. Ferreira 

U.Porto Journal of Engineering, 11:1 (2025) 116-129 123 

3. Results and discussion 
3.1. MCD analysis 
MCD measures the distance between the converted and reference cepstral features, where a 
lower MCD value indicates better performance of the system. Table 3 and Table 4 present the 
mean and standard deviation of MCD for the database without and with silence removed, 
respectively. 

Group 
Male  Female 

MLP GAN DiscoGAN  MLP GAN DiscoGAN 
1 4.58 ± 0.39 5.60 ± 0.38 5.26 ± 0.48  4.83 ± 0.61 5.05 ± 0.74 5.91 ± 0.78 
2 3.93 ± 0.30 5.31 ± 0.83 5.24 ± 0.56  4.03 ± 0.45 5.81 ± 0.75 5.96 ± 0.85 
3 4.70 ± 0.47 5.58 ± 0.60 6.78 ± 0.54  4.87 ± 0.64 9.20 ± 1.01 5.99 ± 0.66 

4 4.72 ± 0.57 6.52 ± 0.56 5.82 ± 0.59  4.99 ± 0.66 6.69 ± 0.93 5.94 ± 0.73 
mean 4.48 ± 0.43 5.75 ± 0.59 5.77 ± 0.54  4.68 ± 0.59 6.69 ± 0.85 5.95 ± 0.75 

Table 3: The mean values and standard deviations of  
MCD without silence removed. 

 

Group 
Male  Female 

MLP GAN DiscoGAN  MLP GAN DiscoGAN 

1 3.93 ± 0.48 7.91 ± 1.78 4.74 ± 0.73  4.21 ± 0.66 6.41 ± 0.83 6.04 ± 1.01 
2 4.43 ± 0.75 5.11 ± 0.80 5.12 ± 0.71  4.84 ± 0.61 6.31 ± 0.58 6.76 ± 0.78 
3 4.58 ± 0.75 5.17 ± 0.80 5.22 ± 0.85  4.52 ± 0.70 5.05 ± 0.81 5.16 ± 0.72 
4 4.71 ± 0.79 7.39 ± 0.92 5.27 ± 0.78  4.84 ± 0.71 12.01 ± 2.61 5.33 ± 0.77 

mean 4.41 ± 0.69 6.39 ± 1.08 5.08 ± 0.77  4.60 ± 0.67 7.45 ± 1.20 5.82 ± 0.82 

Table 4: The mean values and standard deviations of MCD with silence removed. 

We compared the results of three neural models, and found that the mean MCD of the MLP 
model was better than that of the GAN and DiscoGAN models, with differences of 36% and 
28% respectively. Furthermore, there was no statistically significant difference in the results 
for male and female voices and no significant advantage in excluding silent segments from the 
speech signals. 

3.2. RMSE analysis 
The second metric is the RMSE of log(𝐹𝐹0), which measures the error between the converted 
and reference 𝐹𝐹0 values after they are time-aligned using the Dynamic Time Wraping (DTW) 
algorithm. Table 5 and Table 6 present the mean RMSE values and standard deviations for the 
database without and with the silent parts removed, respectively. 

Group Male  Female 
MLP GAN DiscoGAN  MLP GAN DiscoGAN 

1 13.90 ± 5.24 13.68 ± 5.97 10.59 ± 4.05  21.33 ± 8.10 17.72 ± 9.86 21.80 ± 13.93 
2 16.00 ± 9.27 10.70 ± 7.16 12.95 ± 7.41  17.52 ± 8.91 14.56 ± 8.97 13.67 ± 8.24 
3 15.59 ± 7.31 17.44 ± 10.59 17.44 ± 11.38  22.86 ± 10.20 20.98 ± 9.92 20.65 ± 10.77 
4 17.06 ± 9.32 19.52 ± 9.49 16.75 ± 10.24  23.40 ± 11.55 18.15 ± 8.57 21.61 ± 12.53 

mean 15.63 ± 7.78 15.36 ± 8.30 14.43 ± 8.27  21.27 ± 9.69 17.85 ± 9.33 19.43 ± 11.36 

Table 5: The mean values and standard deviations of RMSE of log(𝐹𝐹0) without 
silence removed. 

 
 



Neural network models for whisper to normal speech conversion 
Cézar F. Yamamura, Paulo R. Scalassara, Marco A. Oliveira, Aníbal J. S. Ferreira 

U.Porto Journal of Engineering, 11:1 (2025) 116-129 124 

 
Group 

Male  Female 
MLP GAN DiscoGAN  MLP GAN DiscoGAN 

1 6.43 ± 3.67 10.10 ± 7.45 6.69 ± 7.27  7.55 ± 3.05 7.07 ± 3.35 8.70 ± 6.79 
2 6.17 ± 2.23 6.59 ± 2.42 8.04 ± 3.52  19.56 ± 8.30 16.50 ± 9.21 21.73 ± 11.51 
3 6.87 ± 3.54 6.72 ± 3.79 7.24 ± 4.29  9.04 ± 3.34 7.29 ± 3.48 7.43 ± 3.01 
4 7.83 ± 3.61 9.38 ± 5.12 8.13 ± 4.39  10.02 ± 3.77 9.38 ± 7.19 7.20 ± 3.43 

mean 6.82 ± 3.26 8.20 ± 4.69 7.52 ± 4.86  11.54 ± 4.61 10.06 ± 5.80 11.26 ± 6.18 

Table 6: The mean values and standard deviations of RMSE of log(𝐹𝐹0) with silence 
removed. 

Using this metric, we observed that the database with silence obtained higher values, which 
is undesirable, while the database without silence had better results. Therefore, the presence 
of silence makes it difficult to calculate the log(𝐹𝐹0) estimate. An example of the generated 𝐹𝐹0 
contour using the various developed systems are shown in Figure 6. 

 
Figure 6: The log(𝐹𝐹0) predicted using the corresponding natural speech signal, 

MLP, GAN, and DiscoGAN for male and female speakers. 

In Figure 6, we can observe that all the conversion systems, whether using MLP, GAN, or 
DiscoGAN, closely follow the distribution of the 𝐹𝐹0 corresponding to the natural speech, with 
some oscillation. Tables 5 and 6 show, omparing the neural models, GAN and DiscoGAN 
outperform MLP. However, considering the RMSE standard deviation, the three systems 
perform similarly. We concluded that the presence of silence affects the results, with an 
improvement of 46% for the system trained with the database without silence. This can be 
explained by the challenges neural networks face when estimating 𝐹𝐹0 in the presence of 
silence. In regions of silence, the 𝐹𝐹0value is effectively zero, and the transition between zero 
and the actual pitch value can create inconsistencies that are difficult for the model to learn. 
However, silence removal did not have a significant impact on the MCD or vowel classification 
performance. Therefore, silence removal only contributed to improving the 𝐹𝐹0 estimation, but 
it did not have a notable effect on the overall performance of vowel conversion or 
classification tasks. 

3.3. Vowel classifier 
In the final analysis, we evaluated the performance of a vowel classifier based on a MLP with 
three hidden layers. The network was trained on normal speech signals and tested on the 
converted signals to assess its ability to distinguish between vowels. To obtain reliable results, 
we adopted the K-fold cross-validation method with k=10, dividing the database into ten equal 
parts. 
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Table 7 and Table 8 present the accuracy of the vowel classifier network without and with 
silence removed, respectively. Group 1, which contains only the vowel /a/, was excluded from 
the analysis as it was used to classify between the vowel /a/ and silence. Hence, Table 8 did 
not consider group 1. 

Group 
Male  Female 

MLP GAN DiscoGAN  MLP GAN DiscoGAN 

2 92.8% 93.5% 91.2%  85.4% 90.4% 92.4% 
3 94.8% 93.1% 88.8%  89.4% 74.1% 84.8% 
4 88.3% 83.4% 85.5%  79.8% 81.9% 77.0% 

mean 93.3% 91.6% 90.7%  86.8% 84.5% 84.9% 

Table 7: Accuracy of the vowel classifier for signals without silence removed. 

Group 
Male  Female 

MLP GAN DiscoGAN  MLP GAN DiscoGAN 

2 99.5% 99.4% 99.3%  80.3% 82.6% 83.7% 
3 97.6% 97.4% 94.6%  93.9% 94.5% 95.7% 
4 87.7% 58.3% 77.6%  84.7% 21.0% 84.2% 

mean 94.9% 85.0% 90.5%  86.3% 66.0% 87.8% 

Table 8: Accuracy of the vowel classifier for signals with silence removed. 

Tables 7 and 8 show, in general, MLP had a better performance than GAN and DiscoGAN. It 
was also noticed that the accuracy decreases as the number of vowels in the database 
increases. However, this is understandable because the network must classify more variables. 
We also assessed the F1-score for all vowels, using only group 4 for this purpose. The F1 score 
blends precision and recall using their harmonic mean. Maximizing for the F1 score implies 
simultaneously maximizing for both precision and recall. Tables 9 and 10 present the F1-score 
for each vowel, without and with silence removed, respectively. 
 

Group 
Male  Female 

MLP GAN DiscoGAN  MLP GAN DiscoGAN 
silence 93.4% 93.7% 93.0%  87.4% 94.4% 86.5% 

i 83.1% 80.2% 77.3%  71.6% 76.4% 65.0% 
e 90.1% 85.0% 84.6%  84.3% 81% 78.9% 
a 91.1% 83.7% 87.6%  72.7% 28.0% 69.0% 
o 82.3% 73.8% 77.6%  66.7% 42.5% 64.8% 
u 71.2% 46.1% 60.5%  65.7% 71.2% 58.4% 

mean 85.2% 77.1% 80.1%  74.7% 65.6% 70.4% 

Table 9: F1-score without silence removed. 
 

Group 
Male  Female 

MLP GAN DiscoGAN  MLP GAN DiscoGAN 
i 93.1% 71.7% 72.3%  69.8% 0% 77.0% 
e 92.0% 60.6% 86.3%  89.3% 0% 90.3% 
a 93.4% 79.1% 89.1%  89.1% 0% 89.4% 
o 85.5% 28.5% 77.8%  80.3% 34.6% 82.1% 
u 76.3% 51.9% 51.3%  77.4% 1.8% 77.3% 

mean 88.1% 58.4% 75.4%  81.2% 0% 83.2% 

Table 10: F1-score with silence removed. 

Once again, we observed that the MLP network outperformed the other networks. Regarding 
the vowels, /a/ yielded the best result, while the worst was the vowel /u/. By examining the 
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confusion matrix of the best average F1-score results, as shown in Figure 7, we notice that the 
vowel /u/ indeed exhibited the poorest performance and was mainly confused with the vowel 
/o/. 

 
                                      (a)                                                                                   (b) 

  
                                      (c)                                                                                   (d) 

Figure 7: Confusion matrix of the best F1-score results: (a)-(b) without silence 
removed and (c)-(d) with silence removed. 

Furthermore, we observed that the vowel classifier encountered greater challenges in 
classifying female voices compared to male ones. This discrepancy was evident in both 
accuracy and F1-score, particularly when dealing with signals generated by the GAN, which 
exhibited a lower performance of 58.3% for male voices and 21.0% for female voices. Upon 
analyzing the F1-score, it was observed that the vowels contributing most to this difficulty 
were /o/ and /u/, likely due to their similar acoustic and articulatory properties, as highlighted 
in studies such as Chládková and Escudero (2012). These vowels are inherently confusable, 
particularly in whispered speech where distinctions are less pronounced. Regarding the 
silence removed, it did not contribute at all to the improvement of the result. 
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4. Conclusions 

This study presents an implementation of whisper to normal European Portuguese vowel 
conversion system using neural network models. One of the contributions of this study is the 
use of the European Portuguese database provided by the collaboration between FEUP and 
UTFPR for the development of the speech conversion systems. 
To validate the methodology of the speech conversion system, we implemented three neural 
networks: i) MLP, ii) GAN, and iii) DiscoGAN. We partitioned the database by gender, groups 
of different vowels, and speech signal with and without silence removed for all networks. We 
evaluated the performance of each system using three metrics: i) MCD, ii) RMSE of log(𝐹𝐹0), 
and iii) Vowel classification performance. 
During the analysis, it was observed that the RMSE of log(𝐹𝐹0) was improved when using the 
database with the silence removed. However, silence removal did not have a significant 
impact on the MCD or vowel classification performance. Therefore, silence removal only 
contributed to improving the 𝐹𝐹0 estimation, but it did not have a notable effect on the overall 
performance of vowel conversion or classification tasks. 
In the gender-based performance comparison, female voices exhibited greater variation in 
certain metrics, particularly in RMSE of log(𝐹𝐹0). This variation can be attributed to several 
factors, including anatomical differences in vocal tract structures and fundamental frequency 
ranges between males and females. Additionally, the acoustic features of female voices might 
be more sensitive to small changes in speech characteristics, which could contribute to the 
observed higher variability in RMSE. 
Furthermore, the performance evaluation of the three networks, MLP, GAN, and DiscoGAN, 
indicated that MLP yields better results for MCD and vowel classification performance, while 
GAN outperformed the other models in terms of RMSE of log(𝐹𝐹0). 

References 
Ardaillon, L., N. Henrich, e O. Perrotin. 2022. “Voicing Decision Based on Phonemes 

Classification and Spectral Moments for Whisper-to-Speech Conversion.” In Proceedings of 
Interspeech 2022, 2253–2257. https://doi.org/10.21437/Interspeech.2022-10675. 

Behlau, M. 2001. Voz: O Livro do Especialista. São Paulo: Revinter. 
https://ria.ufrn.br/jspui/handle/123456789/2886. 

Chládková, K., e P. Escudero. 2012. “Comparing Vowel Perception and Production in Spanish 
and Portuguese: European versus Latin American Dialects.” Journal of the Acoustical 
Society of America 131 (2): EL119–EL125. https://doi.org/10.1121/1.3674991. 

Dhar, S., N. D. Jana, e S. Das. 2022. “An Adaptive Learning-Based Generative Adversarial 
Network for One-to-One Voice Conversion.” IEEE Transactions on Artificial Intelligence, in 
press. https://doi.org/10.1109/TAI.2022.3149858. 

Erro, D., I. Sainz, E. Navas, e I. Hernáez. 2011. “Improved HNM-Based Vocoder for Statistical 
Synthesizers.” In Proceedings of the Annual Conference of the International Speech 
Communication Association (INTERSPEECH), 1809–1812. Florence, Italy. 
https://aholab.ehu.eus/papers/IS110663.pdf. 

Gao, T., J. Zhou, H. Wang, L. Tao, e H. K. Kwan. 2021. “Attention-Guided Generative Adversarial 
Network for Whisper to Normal Speech Conversion.” arXiv preprint arXiv:2111.01342. 
https://doi.org/10.48550/arXiv.2111.01342. 

https://doi.org/10.21437/Interspeech.2022-10675
https://ria.ufrn.br/jspui/handle/123456789/2886
https://doi.org/10.1121/1.3674991
https://doi.org/10.1109/TAI.2022.3149858
https://aholab.ehu.eus/papers/IS110663.pdf
https://doi.org/10.48550/arXiv.2111.01342


Neural network models for whisper to normal speech conversion 
Cézar F. Yamamura, Paulo R. Scalassara, Marco A. Oliveira, Aníbal J. S. Ferreira 

U.Porto Journal of Engineering, 11:1 (2025) 116-129 128 

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, e Y. 
Bengio. 2020. “Generative Adversarial Networks.” Communications of the ACM 63 (11): 
139–144. https://doi.org/10.1145/3422622. 

Grozdić, D. T., e S. T. Jović. 2017. “Whispered Speech Recognition Using Deep Denoising 
Autoencoder and Inverse Filtering.” IEEE/ACM Transactions on Audio, Speech, and 
Language Processing 25 (12): 2313–2322. https://doi.org/10.1109/TASLP.2017.2738559. 

Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior, et al. 2012. “Deep 
Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four 
Research Groups.” IEEE Signal Processing Magazine 29 (6): 82–97. 
https://doi.org/10.1109/MSP.2012.2205597. 

Morris, R. W., e M. A. Clements. 2002. “Reconstruction of Speech from Whispers.” Medical 
Engineering & Physics 24 (7): 515–520. https://doi.org/10.1016/S1350-4533(02)00060-7. 

Oliveira, M. A. M. 2020. Modelização de Filtro de Trato Vocal para Reconstrução de Voz 
Disfónica. Dissertação de Mestrado, Faculdade de Engenharia da Universidade do Porto, 
Porto, Portugal. https://repositorio-aberto.up.pt/bitstream/10216/126255/2/386486.pdf. 

Parmar, M., S. Doshi, N. J. Shah, M. Patel, e H. A. Patil. 2019. “Effectiveness of Cross-Domain 
Architectures for Whisper-to-Normal Speech Conversion.” In Proceedings of the European 
Signal Processing Conference (EUSIPCO), 1–5. 
https://doi.org/10.23919/EUSIPCO.2019.8902961. 

Pascual, S., J. Serra, e A. Bonafonte. 2019. “Time-Domain Speech Enhancement Using 
Generative Adversarial Networks.” Speech Communication 114: 10–21. 
https://doi.org/10.1016/j.specom.2019.09.001. 

Saito, Y., S. Takamichi, e H. Saruwatari. 2018. “Statistical Parametric Speech Synthesis 
Incorporating Generative Adversarial Networks.” IEEE/ACM Transactions on Audio, Speech, 
and Language Processing 26 (1): 84–96. https://doi.org/10.1109/TASLP.2017.2761547. 

Shah, N. J., M. Parmar, N. Shah, e H. A. Patil. 2018. “Novel MMSE DiscoGAN for Cross-Domain 
Whisper-to-Speech Conversion.” In Machine Learning in Speech and Language Processing 
(MLSLP) Workshop, 1–3. Google Office. 

Sharifzadeh, H. R., A. HajiRassouliha, I. V. McLoughlin, I. T. Ardekani, J. E. Allen, e A. 
Sarrafzadeh. 2017. “A Training-Based Speech Regeneration Approach with Cascading 
Mapping Models.” Computers & Electrical Engineering 62: 601–611. 
https://doi.org/10.1016/j.compeleceng.2017.06.007. 

Sharifzadeh, H. R., I. V. McLoughlin, e F. Ahmadi. 2010. “Reconstruction of Normal-Sounding 
Speech for Laryngectomy Patients Through a Modified CELP Codec.” IEEE Transactions on 
Biomedical Engineering 57 (10): 2448–2458. 
https://doi.org/10.1109/TBME.2010.2053369. 

Silva, J., M. Oliveira, e A. Ferreira. 2021. “Flexible Parametric Implantation of Voicing in 
Whispered Speech Under Scarce Training Data.” In Proceedings of the 28th European Signal 
Processing Conference (EUSIPCO), 416–420. 
https://doi.org/10.23919/Eusipco47968.2020.9287684. 

Silva, J. P., M. A. Oliveira, C. F. Cardoso, e A. J. Ferreira. 2020. “Manipulation of the 
Fundamental Frequency Micro-Variations Using a Fully Parametric and Computationally 
Efficient Speech Model.” In Proceedings of the 2020 IEEE Workshop on Signal Processing 
Systems (SiPS), 1–6. https://doi.org/10.1109/SiPS50750.2020.9195214. 

https://doi.org/10.1145/3422622
https://doi.org/10.1109/TASLP.2017.2738559
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/S1350-4533(02)00060-7
https://repositorio-aberto.up.pt/bitstream/10216/126255/2/386486.pdf
https://doi.org/10.23919/EUSIPCO.2019.8902961
https://doi.org/10.1016/j.specom.2019.09.001
https://doi.org/10.1109/TASLP.2017.2761547
https://doi.org/10.1016/j.compeleceng.2017.06.007
https://doi.org/10.1109/TBME.2010.2053369
https://doi.org/10.23919/Eusipco47968.2020.9287684
https://doi.org/10.1109/SiPS50750.2020.9195214


Neural network models for whisper to normal speech conversion 
Cézar F. Yamamura, Paulo R. Scalassara, Marco A. Oliveira, Aníbal J. S. Ferreira 

U.Porto Journal of Engineering, 11:1 (2025) 116-129 129 

Wali, A., Z. Alamgir, S. Karim, A. Fawaz, M. B. Ali, M. Adan, e M. Mujtaba. 2022. “Generative 
Adversarial Networks for Speech Processing: A Review.” Computer Speech & Language 72: 
101308. https://doi.org/10.1016/j.csl.2021.101308. 

Yu, G., Y. Wang, H. Wang, Q. Zhang, e C. Zheng. 2021. “A Two-Stage Complex Network Using 
Cycle-Consistent Generative Adversarial Networks for Speech Enhancement.” Speech 
Communication 134: 42–54. https://doi.org/10.1016/j.specom.2021.09.010. 

Acknowledgments 
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior – Brasil (CAPES) – Finance Code 001. The authors also thank the Federal University 
of Technology - Paraná, Brazil. 

https://doi.org/10.1016/j.csl.2021.101308
https://doi.org/10.1016/j.specom.2021.09.010

	1. Introduction
	2. Methodology
	2.1. Database
	2.2. Feature Extraction
	2.3. Networks architectures
	2.4. Conversion system
	2.5. Objective metrics

	3. Results and discussion
	3.1. MCD analysis
	3.2. RMSE analysis
	3.3. Vowel classifier

	4. Conclusions
	This study presents an implementation of whisper to normal European Portuguese vowel conversion system using neural network models. One of the contributions of this study is the use of the European Portuguese database provided by the collaboration bet...
	References
	Acknowledgments

