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 This paper provides a description of an undergraduate course on 
vibration, given to second and third year students at Bristol 
University in the UK. The course, and my teaching philosophy, were 
developed over more than 30 years. The lectures were given in two 

20-hour courses which were supported by an equal number of 
examples classes. Students were provided with a series of question 
sheets which contained questions from previous examination 
papers. In addition, laboratory classes were provided to give the 

students “hands on” experience on how to excite, control, measure, 
and to interpret various vibrating systems. The first set of lectures 
began with the analysis of a single degree of freedom system, adding 
different forcing functions and more degrees of freedom. The second 

set of lectures introduced continuous systems, consisting of bars, 
beams, and plates. The limitations of reality, particularly boundary 
conditions, was emphasized. Wherever possible, some artifact was 

taken to the lecture amplify the mathematics. I have interleaved into 
the presentation some of my teaching philosophy and how it is 
important in a heavily mathematical subject such as vibration to 
teach rather than to try and impress the students as to how clever is 

their lecturer. Finally, if the lecturer does not enjoy giving the 
lectures, the students will  not receive that “extra” which 
distinguishes a good lecture from a bad lecture, and also 
distinguishes a good lecture from reading a text book. 

1. Philosophy of teaching 

As this is a personal account, I ask you to forgive me for using I, me instead of a more formal 
mode of writing. I gave a series of lectures on Vibration in the second and third years of the 

Mechanical Engineering course at the University of Bristol, each course having about 20 
lectures and supported by examples classes and laboratories. 

Many books have been written on vibrations, each using their own style and emphasis. 

Unfortunately, I did not find a single book which I could recommend to my students to support 
my lecture courses. Books are often written to impress publishing committees and their 
advisors, so must be different from what has been done before. As a professor, I could quickly 
identify books which were written to impress professors rather than to be useful and 
intelligible to students. 

Engineering [and other] courses change with time; some material will be dropped while other 

material will be added. A good course will contain a spectrum of subject matter so that a 
student will graduate with a knowledge and understanding which should be not only 
immediately useful in his/her new job but will sustain the necessary knowledge acquisition 
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tools during his/her career. The first question to be asked about the teaching of any part of 
any subject is “Why should we teach this”? Questions as to when, how, and how deep will 
surely follow. Some subjects, such as electronics and computer science have moved very 
quickly in the last few years while subjects such as dynamics, elasticity, plasticity, and 
thermodynamics have hardly changed, while they are still necessary to understand modern 

engineering. But some people have odd perspectives. I was once asked by a lecturer in 
electronics why we still taught steam in our thermodynamics courses. He had no concept as 

to how electricity was generated via steam turbines  and to gain a tiny increase in efficiency 
had major economic implications. Vibrations, being a major subset of dynamics, is important 

in all aspects of engineering where structural forms can be subject to some form of excitation. 
It is therefore necessary to understand how structures respond and what is the nature of the 

excitation. These days, complex structures can be analysed using computer programs such as 
finite element [FE] analysis. However, to understand the limitations and pitfalls of these 

programs, the basic building blocks on which they are based must be understood. This also 
includes efficient approximate methods, such as Rayleigh and Stodola, for obtaining solutions. 

In vibrations, real systems are modelled so that we can understand why a structure or system 
responds in the way it does to some sort of excitation. We teach simple [lumped] systems 

where the mass, stiffness and damping are separate, and systems  such as bars, beams, and 
plates where the mass and stiffness are “distributed”. In my own teaching, the lumped 

systems were in year 2 and the distributed systems in year 3. Both lumped and distributed 
systems can quickly become very complicated mathematically, except for very simple cases. 

Without a thorough understanding of those simple systems, FE and similar models cannot be 
created and only the unwise use them without a good knowledge of the underlying mechanics. 

There is an unfortunate tendency in universities to teach only that which can be examined. It 
leads to lots of mathematical manipulations which are readily marked in examinations. 

However, the useful part of engineering is not just solving algebra but understanding the limits 
of such algebra we have applied to a real engineering situation. Unfortunately, this “useful” 

material is not easily taught and examined as it requires a maturity of experience which 
undergraduates do not have. However, the lecturer ought to have some relevant experience 
from his/her research, experience in industry, or consulting. Imparting experience forms a 
useful means of breaking up a solid hour of mathematics and allows some of the slower 

members of the class to catch up. All classes will have a range of ability and my experience of 
teaching means it is not easy to keep everyone happy all the time. Some of the “whiz kids” 
can get impatient with deviations from straight line mathematics as all they are interested in 
is doing well in the examinations; such people do not always become good engineers. At a 

dinner, I asked a student from another engineering Department which lecturer was generally 

thought of [by the students] as the cleverest in his Department. His answer was Dr X. This 
surprised me as Dr X had a very light research record, so I asked why he was the cleverest. He 

said that Dr X’s lectures were so difficult to follow that he must be very clever as only he 
seemed to be able to understand them. In contrast, there is also the danger of making lectures 

too easy to understand so students lose concentration and hence the thread of the lecture. 
For this reason, it is vital to be able to see the faces of the students as this will give a good 

indication as to whether they are bored or baffled. It is also important to encourage students 
to ask questions during a lecture since for every bold student, there will be ten timid ones who 

would have liked to have asked that question but did not have the courage to do so. Above 
all, with a subject such as vibrations, where there is a substantial mathematical content, the 

lecturer must communicate and not just try to look clever. 
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I was brought up on “chalk and talk” whereas the current trend is to use Powerpoint or similar 
presentation methods. With Powerpoint, the students can read the equations easily and many 
institutions arrange for electronic copies of the lecture to be available. But if the students are 
to understand what is being presented, they must follow the steps in any argument being 
developed. It is not for nothing that the main lecture theatre in the newly built Maths 

Department at Oxford is equipped with a battery of whiteboards  [although they do also have 
the facilities for more modern projection methods]. I am old fashioned enough to believe in 

teaching rather than lecturing. A lecture presentation is an ego trip, while teaching is the 
successful communication of a message. For that reason, I never presented from notes [even 

though I had them with me] but developed my argument directly from my head. The basis for 
this way of teaching was that students ought to be able to follow me in real time as the rate 

of my presentation should, approximately, match their rate of understanding. When using 
Powerpoint or similar, it is not easy to pace the presentation, particularly with respect to 

laying out line by line steps. Of course, there are those who will call me old fashioned, to which 
I say OK, you do it your way and I will do it mine. In over 30 years of teaching vibration, I have 
learned what works and what does not. 

Some lecturers are lazy when setting questions in exams. Lazy questions are of the form 

“derive from first principles…“ or “show that…”, and are simply tests of mathematical skill 
which are easy to mark. Being mathematical, Vibration has many opportunities for lazy 

questions, but these do not draw out any understanding of the subject. In both my courses, I 
gave out a crib sheet containing all the basic equations [and their solutions] early in the course 

and told the students that an identical crib sheet would be given out in the exams. These crib 
sheets [for year 2 and years 3] are given in the supplementary information to this paper 

[SI_Crib sheets_2_and_3]. I invited the students to advise me if they wanted anything to be 
added, but nothing ever was. The objective was that the students were not expected to derive 

standard equations, but to use the given equations to solve questions posed as stories. Many 
enlightened universities provide students with quite extensive help books covering a wide 
variety of courses. For example, the Department of Engineering Science at Oxford University 
provides an extensive 180 page book authored by Howatson, Lund, and Todd. The book is 
issued to every student and is given out with the question paper in all exams. 

2. Cautions 

Students do not like torsional vibration. They find the sign conventions much more challenging 
than for linear problems. Curiously, this applied more to lumped parameter models than for 
distributed systems such as bars. Extra care must therefore be taken in teaching torsional 
motion and strict sign conventions used. 

I found it easier to use the Heaviside Operator D [=iω] rather than Laplace Transforms when 

deriving solutions. The Laplace Transform gives both a steady state [Particular Integral] and a 
transient [Complementary Function] solution when all I needed was the steady state response 
to a forcing function. 

Experience showed that students preferred a solution in the form of cos[ωt-φ] where φ is a 
phase angle rather than using the complex form such as eiωt . Somehow, it seemed to be more 

tangible to use real values rather than imaginary numbers. 

I was once persuaded to use the concept of Receptances for teaching more complex systems, 
but this led to groans of anguish and I quickly reverted to more conventional equations. 
Receptances were used prior to the advent of digital computers and were a useful tool in their 
day, but that day has long passed. 
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3. What do we teach and how to get good outcomes 

All universities and colleges will have different resources and will allocate different weighting 
to their menu of courses. I will describe what I did at Bristol University when I taught there on 
Vibrations for a period of over 30 years. I gave 20 lectures, each of 50 minutes duration, in 
years 2 and 3. While I am not trying to write another book, it will be necessary to describe in 
some detail what was taught. 

3.1. Teaching programme 

In Year 2, an introductory lecture was used to outline the course and to talk generally about 
why engineers need to understand what happens due to unwanted vibration. Problems of 

fatigue, noise, discomfort, and component malfunction were described. The mathematical 
representation of vibration was introduced using a vector, u0, rotating at an angular frequency 

ω such that the projection on a horizontal plane is u0 cos ωt where t is the time from some 
datum as shown in Figure 1. 

 
Figure 1: Mathematical representation of harmonic vibration 

The angular frequency ω [rad/sec] [=2πF] is used for convenience; F is the frequency and has 
units 1/time or, scientifically, Hertz [Hz] and is such that ω = 2πF. It is easily shown that for a 

vector rotating at an angular velocity ω, the period of one oscillation is τ such that ωτ = 2π and 
that Fτ = 1. The variation of amplitude with time is given in Figure 2. 

 
Figure 2: Variation of amplitude with time 

This oscillatory form of u(t) is said to be characterised in the time domain. We can also show 

it in the frequency domain, as in Figure 3. 

 
Figure 3: Frequency domain representation 
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3.2. Free vibration, Single degree of freedom system [1DoF] 

The first few lectures considered a single degree of freedom system consisting of a mass, 
spring, and a viscous damper, as shown in Figure 4. 

 

k 

m uuu  ,,  

  f 

 
Figure 4: Single degree of freedom system consisting of a mass, spring, and dashpot 

By considering the forces acting on the mass, the basic equation: 
mu fu ku  +   +   =  0  (1) 

can be derived. In my notation, u,v, and w are displacements in the x, y, and z directions, m is 
the mass, f is the dashpot constant and k is the spring stiffness. The solution to Equation 1 is 
of the form: 
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The concept of critical damping was introduced such that: 

c f fc =  /  

where c is the proportion of critical damping and fc is the critical dashpot constant. It was 
explained that critical damping [c = 1] defines the border between an oscillatory and a non-
oscillatory response. 

If c > 1, the response is non-oscillatory and is given by: 
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If c < 1, the response is oscillatory and is given by: 
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The special case of c = 1 has a response given by: 
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Note that Equation 1 was developed for a horizontally moving mass where gravity is not 
considered. But if the mass is hanging vertically, the position it sits at rest, the equilibrium 
position, must be defined and oscillation defined from that datum. Otherwise, the equations  
become rather messy, and it is easy to make mistakes. 

The students know what a mass and a spring look like, but few will have met a viscous dashpot. 
Having worked on my own cars, I had a damper or two in my garage, so these were handed 
round the class to get the “feel” of how they acted. As most students are interested in cars, 
they all know the terms “damper” and “shock absorber” and use them interchangeably. Now 
is the opportunity to illustrate the lectures on single degree of freedom systems without any 

excitation term. A damper serves to reduce any oscillation of the car body relative to the 
wheels. Until the mid 1930s, most cars used friction dampers. These consisted of friction discs 

compressed by a central bolt. If the bolt was too tight, the damper was locked solid and so did 
not work. If the bolt was too slack, there was little frictional resistance and so little damping. 

These friction dampers were replaced by oil filled telescopic viscous dampers which have a 
stronger force in one direction than the other for a given velocity. Why? This is where the 

shock absorber behaviour is revealed. A 1000kg car will have each wheel supporting about 
250kg, so the spring will normally have a compressive load of 2500N. If the wheel hits a raised 

bump in the road, the wheel is forced upwards, compressing the spring and damper. The force 
in spring cannot be avoided [hard or soft springs…] but the force in the damper is proportional 

to the dashpot constant. To reduce the force transmitted to the vehicle body, this dashpot 
constant should ideally be zero, or as small as possible. Now consider the opposite case where 

the wheel encounters a downward depression or hole in the road. A typical wheel might have 
a combined mass [rim plus tyre] of 15kg for a 1000kg vehicle. We now have a force of 2500N 

acting on a 15kg mass. The spring will accelerate the wheel towards the bottom of the hole 
where it will suddenly stop, causing a severe impulse on the car body. This is where the shock 

absorber function comes into action. If the damper constant is high, the downwards  
acceleration of the wheel, and hence the impulse, will be reduced. This is why the dashpot 
constants in the two directions are different. Of course, for practical considerations, there has 
to be a compromise, and note that modern telescopic dampers can be much more 
complicated than a simple piston in a tube. 

Equation 1 and its solution are very useful in illustrating not only the need to understand 

vibration, but also how this affects everyday events. Explaining to the students that the 
damping in a typical modern car is near to critical and this can be seen by pushing a car up and 
down and then seeing how long it takes to come to rest, is left to the discretion of the 
lecturer… 

It was also pointed out that viscous damping is a mathematical convenience. Apart from 

certain polymers and oil based viscous dampers, material damping is hysteretic and not 
frequency dependent, but is often amplitude dependent. Also, much structural damping is 
due to friction which is certainly not viscous. 

3.3. Forced vibration, 1 DoF 

Next comes forced vibration where there are two cases, neither of which is exactly followed 

in practice. In the first, a harmonic force of magnitude P acts on the mass. This magnitude of 
this force is usually kept constant and it is assumed that the force can move through any 

distance as the mass moves, even at resonance. In this case, we have: 
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Figure 5: Single degree of freedom system with forced excitation 

From the forces acting on the mass shown in Figure 5 and applying Newton’s second law, the 

equation of motion is given by: 
mu fu ku P t  cos +   +   =     (2) 

The solution of which in the steady state is given by the Frequency Response Function, FRF: 
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In practice, the force is often due to a rotating out of balance or a reciprocating component 
such that the magnitude of the force is proportional to ω2. This is particularly important at 

frequencies above resonance. 

The second case in forced vibration is where there is abutment [earthquake] excitation as 
shown in Figure 6. 

 
Figure 6: Single degree of freedom system with abutment excitation 

Here, it is assumed that whatever is causing the excitation is such that any reaction back to 
the abutment has no effect on its ability to shake the vibrating system. Now, we have: 

mu fu ku m Ur r r   +   +   =  -   (3) 
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The relative motion between the abutment and the mass is ur such that: 
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The responses u and ur are the Frequency Response Functions. These should be sketched out 
so that resonance can be defined and the characteristic differences between the different 
forms of excitation and response [displacement, velocity or acceleration] can be pointed out. 

An important, and often overlooked, feature is Transmissibility, T, which defines the force 

transmitted from the vibrating system to the support, and thence to its surroundings. For the 
case of an excitation of the form P cos ωt [see Figure 5] we have that the force transmitted to 

the support, FT, is given by: 

F ku fuT     
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and it can be shown that: 
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Which is of the same form as the FRF for abutment excitation. 

The concept of Transmissibility leads to another demonstration and an introduction to 
acoustics. I made a box about 500mm cube which was open on one side. It was made from 

20mm thick chipboard and lined with 20 mm thick carpet underfelt. The open side was 
supported on 10mm diameter rubber tube which provided a seal when the box was rested on 

it. The excitation source was a small electric “buzzer” which sat on a 100 gm mass. Some soft 
foam and some light coil springs completed the inventory. When held in the hand, the buzzer 

can usually be heard by the class. However, when placed on a desk, it couples well because 
the desk acts as a sounding board [as in a violin]. But when we introduce the soft foam or 

springs between the buzzer and the desk, the sound is much reduced. We now see that soft 
springs are good for reducing the force transmitted to the desk, which can be seen in the 

variation of T with frequency above the resonance region where r >> 1. If the box is placed on 
the desk with the buzzer inside and isolated from the desk, all is si lent. If the foam or springs 

are removed, the buzzer can now be clearly heard as it is exciting the desk and so by-passing 
the box. If we now put the buzzer in the box on the foam, all is silent again until the box is 

tilted with a 50mm or so gap towards the students. Now, the buzzer is clearly heard. So, what 
has been learned? First and foremost, isolation from the surroundings reduces the energy 
transmitted. Second, a simple acoustic enclosure is very effective at reducing airborne 

acoustic propagation, provided the source [buzzer] is isolated so that it cannot by-pass the 
box. Third, even a small opening in the enclosure easily allows sound to escape. 

At the other end of the scale, I showed a rubber block which contained 2mm thick steel sheets 
which was used as a building support where earthquakes were prevalent. The steel sheets 
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were placed in the horizontal direction; this provided a stiff vertical support but was flexible 
to the [mainly] horizontal motion which is so dangerous in earthquakes. 

3.4. Two or more degrees of freedom 

Systems with two or more degrees of freedom [DOF] were also taught. While two degrees of 
freedom could be solved “by hand”, systems with three or more degrees of freedom were 

tediously complex and best left to a computer. Also, even with 2 DOF, it was difficult to solve 
the equations if damping was added. A 2 DOF system, without damping, is shown in Figure 7. 

Note that m2 can either be connected by one spring [k2] or by another which is terminated in 
an abutment. 

u u
1 2

 m

k  k  k

m     
2 1

1 2 3

 
Figure 7: Two degrees of freedom 

To establish the equation of motion, we consider the forces acting on m1 and m2. From the 
solution of this equation, we can determine the natural frequencies 1 and 2, and the 

corresponding mode shapes. Note that it is still a 2 DOF system if k3 exists or is zero. From the 
forces acting on m1, we get: 
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Rearranging and noting that D2  - 2, we get the mode shape u2/u1 
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Similarly, for m2 we have: 

so  m u k u u k u2 2 2 2 1 3 2      
 

or 
 m u k k u k u2 2 2 3 2 2 1   

 

whence, as before, 
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Equating the mode shapes gives us: 
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Even though this equation is a quartic, it only has 2 real roots, say 1 and 2. These are the 

natural frequencies. Dividing the equation in 4 by m1m2 gives: 
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If we know k1, k2, k3 and m1, m2, we can determine 1 and 2. There will be a different mode 
shape, u2/u1, at each natural frequency. 

Because there are now two natural frequencies, it can be shown that: 
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The constants A, B, C, D are determined from the initial conditions. A typical response of one 

of the masses to an initial displacement might be of the form: 

y  3 3 2 7cos cost t  

As shown in Figure 8. 

1

t

u

 
Figure 8: Transient response of a two degrees of freedom system 

If this signal is electronically filtered, we would see that it has two natural frequencies at 3 and 
7 rad/sec as shown in Figure 9. 

Frequency

Amplitude

 
1 2

3

2

3 7  
Figure 9: Frequency domain representation of a  two degrees of freedom system 

It is at this point that I introduce another demonstration. I used a block of wood about 25 mm 

thick into which were glued two steel strips as cantilevers , positioned about 200mm apart. 
The strips were made of spring steel, 1 mm thick, 10 mm wide, and 250mm long. At the ends 

was a hard plastic red ball, about 50mm diameter [probably from a snooker table] with a mass 
of about 150gm. The strips were connected by a pre-tensioned coil spring; mine was about 

10mm diameter and used 0.85 mm wire. 
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Figure 10: Two degrees of freedom demonstration model  

Note that my physical model was not as in the diagram above but needed an additional spring 

of stiffness k1 attached to another abutment on the right. By giving the base a sharp push, the 
two cantilevers could be made to move together in the first mode of vibration. By holding 

them apart and releasing, the second mode was demonstrated. By moving the spring to 
different positions, thereby changing its effective stiffness, it could be shown that the 

frequency of the first mode was independent of the spring stiffness while that of the second 
mode was not. But now we come to the interesting part. By attaching a 100gm magnet to one 
of the strips, displacing and then releasing, it could be shown that energy was transferred from 
one cantilever to the other and back again such that each in turn might be instantaneously at 
rest at one time or another or, by suitable positioning of the magnet, only one might come to 
rest instantaneously. It was easy to move the magnet and to give different initial conditions, 
creating many ways in which the system could vibrate, all of which could be described by the 
equations above. A colleague said he could model my system on his computer and 
demonstrate it on a screen, but it would be much less interesting or convincing to the 
students. 

Forced vibration with a 2 DOF system is straightforward [providing damping is not introduced] . 

Using P cos ωt as the excitation applied to mass 1, it can be shown that the motion of the two 
masses is given by: 

 
  

 
  

u
P k m t

m m

P m k t

k
1

2 2

2

1 2

2

1

2 2

2

2

2

2 2

1

2

1

2 2

2

2

1

1 1




 




 

 

   

 

   

cos cos
 

and 
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
 


 

 




cos

/ /


   

 

Inspection shows that resonance will occur when the excitation frequency ω coincides with 

either of the two natural frequencies. An important result is when ω2 = k2/m2. This defines the 
detuned frequency where the first mass is at rest while the second mas s moves to exactly 
balance the excitation. In certain cases, this is a very useful phenomenon and can be used in 

practice with great effect. If damping is present, u1 is never zero but the frequency range over 
which the vibration amplitude is reduced is widened. The case with damping is sometimes  

referred to as a vibration absorber. I was consulted by a former student to see if it was possible 
to control the vibration transmission from a large shaker [using contra-rotating out of balance 

masses] used to crush refractory powder in a ball mill. The transmitted vibration was causing 
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damage to the walls of the building and suggested solutions were very expensive or 
unfeasible. Fortunately, the electric motor ran at a constant speed, so by designing my 
detuner to oscillate at this frequency, the transmitted vibration was reduced almost to zero, 
much to the amazement of the technicians who ran the ball mill. A year later, it was still 
working perfectly. Colleagues who worked on machine tool vibration used this same principle 

[usually with damping] to stop machines “chattering” when the machine tool vibrates so that 
the cutting tool leaves unwanted marks on the workpiece. 

3.5. Torsional vibration 

Torsional vibration is equivalent to linear vibration except that 

 u   

 m  I (moment of inertia) 

 k  torsional stiffness 

The main complication occurs in geared systems as shown in Figure 11. 

The reduction ratio = n = r3/r2 = -2/3 

To simplify the solution, we let I3 be zero. 

I

I

I

Let I
3

= 0

clockwise

is positive

I

1

3 4

1
k





 
4

1

2 2

k


3




 

 
 



3

2 2

3

F
F

 
Figure 11: Torsional vibrating system showing the interaction of the gear teeth 

Considering the moment acting on I1 and applying Newton’s second law, we have: 

For I

       I

I

1

1

1

 ( )



  

  

1 1 2 1

1 1 1 1 2

 

  

k

k k  

 or (k1 - I1
2
)1 = k12 
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Similarly for I

       I

I

4

4

4

,

 ( )


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  
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For I , anticlockwise)2 (  

I2
 ( ) .  2 1 1 2 2  k F r  

Since I3 = 0, the net torque acting on 3 is zero, so: 

 
We have 5 equations and 5 unknowns, so we can eliminate 4 unknowns to get a single 
equation in say 2, which will give the frequency equation. After some manipulation, we have: 

 
 

I I I I I I I I I
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1 2 4
4 2
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This has two positive roots, 1 and 2. The mode shapes can be determined by substituting 

1 and 2 in turn into the above equations. 

3.6. Approximate numerical solutions of Rayleigh and Stodola 

Students were introduced to Rayleigh’s method for obtaining a numerical estimate of the 
lowest natural frequency of a structure. Rayleigh's method is based on energy. For a linear 

system, with no damping, the total energy at any time is constant, 

Kinetic Energy + Stored Energy is a constant, i.e. KE + SE = R, so 

 maximum K.E. = maximum S.E. 

     (SE = 0)       (KE = 0) 

For a system of masses  m1 m2 ... with displacements u1 u2 ... vibrating at some natural 

frequency i, 

 
  KE KE velocities

2


 

 
  SE SE displacements

2


 

or    KE KE KE  i iu u2 2 2 2  

and  SE SE u2  

 

so 
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u

u

2

2

2


SE

KE
 

If u1, u2 etc. are exact, then  i

2

 is the true natural frequency according to that mode shape. 

However, if we guess the mode shape, i will not be exact. Rayleigh's theorem tells us that a 

reasonable approximation to u1 u2 ... up will give a good approximation to i. Three points to 

note are: 

- F.r
3
 + k

2
 (

4
 - 

3
) = 0 
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(1) An incorrect guess will be equivalent to applying constraints to the sys tem, leading to 
an increase in SE. Thus, for the fundamental frequency, Rayleigh will always give a high 

value of . The better the guess, the nearer is  to the true natural frequency. 

(2) We always use strain energy and not gravitational energy since oscillation about the 
equilibrium position removes the gravitational term. 

(3) A good guess is often the static deflected shape. 




n

-  0 + 'error in mode shape'  
Figure 12: Il lustration of the frequency error as a function of mode shape with 

Rayleigh’s method 

A method of improving the accuracy of the frequency prediction is to use Stodola’s iterative 
method which uses the frequency predicted by Rayleigh’s method, together with the equation 

of motion, to improve the guessed mode shape. This step can be repeated as required. A 

simple example using the system in Figure 7 with equal masses and springs can produce a very 
accurate value for the mode shape and frequency in just a few steps. 

In year 3, the topics covered were on systems with distributed mass and stiffness, such as 
bars, beams, and plates. The differential equations were different from those used for the 
discrete systems taught in year 2, and particular attention was paid to boundary conditions, 
since these describe how the vibrating system interacted with its surroundings. Because the 
vibration changes with position as well as time, we need to use partial differential equations. 

Because of the more complicated mathematics involved, damping was not introduced, nor 
were forcing functions. The aim was to establish natural frequencies and mode shapes , since 
these are what are needed in practice. Introducing time functions was by-passed and it was 

assumed that we always had steady state sinusoidal oscillation. Transient situations will occur, 
of course, and can be dealt with by using the mathematics developed if so needed. 

3.7. Axial Vibration 

I started the course with the axial vibration of uniform prismatic bars. In practice, the 
treatment was restricted to bars which were slender, in which the length/diameter ratio was 
at least 10. Transverse [radial] motion is caused by Poisson’s ratio coupling so the “length” 
parameter really relates to the wavelength. At higher frequencies, the wavelength becomes  
shorter so that the simple equations need to be interpreted with care. 

A schematic of a uniform bar in axial vibration is given in Figure 13 where the symbols have 

their usual meaning. We consider an element of the bar at distance x from one end; the arrows  
shown define the positive x direction. The stress, strain, and displacement will 
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  

x + x 

x 

u + u 

 +  u 

 

 = strain 

 = stress 

 
Figure 13: Element of a bar in axial vibration 

change from position 1 to position 2 as a function of x. The normal force P acting on face 1 in 
Figure 13 in the positive x direction is given by: 

AE
u

x



   
Where E is Young’s Modulus and A is the area. 

Similarly, the force acting on face 2 in the positive x direction is : 

 








AE

u

x

u

x
x










2

2

 

By subtracting the forces on face 1 from those on face 2, and noting that a positive value of 
∂u/∂x represents a tensile strain, we can show that the net force acting on the element is  

 AE
u

x
x






2

2

 

Note that we must now use partial derivatives since u is a function of both x and t. 

By applying Newton’s second law, we have: 

AE
u

x
x A x

u

t




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



2

2

2

2


 

Which, in the limit, gives us the equation of motion for axial vibration, 





 



2

2

2

2

u

x E

u

t


 
(4) 

It is useful to note that E/ρ = c2 where c is the speed of extensional waves in the bar. The 
general solution of Equation 4 is: 

     u u x t u x u t , .  
Where: 

u = (P cosx + Q sinx) (T cos t + U sin t) 

 = 2/c 

  = frequency (Hz) 

 = 2 

The boundary conditions give the constants P, Q, T, U. Normally, T and U are not considered 
as most cases concern steady state oscillation, but they are there if needed. A bar may be 
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fixed at one end or free. It might also be terminated by a spring or a [point] mass. Apart from 
the free condition, all the other boundary conditions are impossible to achieve in practice. For 
instance, a steel bar cannot be attached to a block of infinite stiffness, springs have mass as 
well as stiffness, and masses cannot be made of a material of infinite density so cannot be 
“point” masses. However, it is useful to look at the ideal situations as these give a guide to the 

likely natural frequencies and mode shapes to be expected. 

Fixed 

no movement

 
Figure 14: Bar terminated in a rigid foundation [difficult in practice] 

  

u
u

x
  0, ?



  
Free 

no force

 
Figure 15: Bar free at the end 

There is no force, so   0, so 





 

u

x
0

 
and u = ? 

 

Mass at the end of a bar 

 

M 

x = l  
Figure 16: Bar with mass at the end 

At x = l, we need a force to keep M on the bar, so by Newton's 2nd Law 

Force = mass x acceleration 

!! SIGNS !! 

 Force AE
u

x



  
 

and 
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The force on the mass is in the negative direction of x which gives: 

AE
u

x
M

u

t
M u

l l

l


















  
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




  

2

2

2

 
If we have a bar fixed at one end with a mass at the other, we have: 

 
Figure 17: Bar fixed at one end and free at the other 

x =0,  u = 0 

and at x = l 

AE
u

x
M u

l

l














   2

 
which leads to: 

tan



l

AE

M


2

 

But Aρl = m = mass of the bar and it can be shown that the frequency equation is: 

 l l
m

M
tan 

 

Where   / c 

This equation cannot be solved explicitly. It is called a transcendental equation and has to be 
solved graphically as shown in Figure 18. Note that as we cannot have a point mass, the 

solution is only approximate. If M = 0, m/M = ∞ and the solution gives π/2, 3π/2, etc which is 
for a fixed/free bar. If m/M = 1, the solution is just greater than π/4 for the first mode. 
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Figure 18: Graphical solution to the transcendental equation 

Spring 

If the bar is terminated by a spring, we have: 

K
l

u
u

x
,




 
Figure 19: Bar with a spring termination 

The force in the bar at x = l and the displacement of the bar at x = l is the same as in the spring, 
so [being careful of the signs]: 

 






  AE

u

x
K u

l
l



  
 
Two bars connected together 

x1

u1
x2

u2

l1 l2





 
Figure 20: Two bars connected together 

There must be a continuity of force at the junction, so: 
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A E A E1 1 1 2 2 2   
We also have compatibility of displacements, so, at the junction, 

   u u
l l1 2
1 2

 
 

Note that it is MUCH better to specify x1 and x2, u1 and u2, in opposite directions as in Figure 
20. If you don't believe me, try the alternative! 

Because u1, and x1 are positive in the same direction, as are u2 and x2, then: 




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x
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And both indicate tension. At the join, we have: 
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Such a system, in which the two half bars are of equal length, is used in a resonant wave guide 
for high power ultrasonics. It can be shown that the ratio of the amplitudes of vibration at the 
two ends are inversely proportional to the areas of the bars. At resonance, each of the two 
bars is a quarter wavelength long. In reality, the conditions at the join with respect to force 
are mathematically incorrect and the sharp change in section is smoothed by a radius to avoid 

fatigue failure. Nonetheless, it works, and I used such a device resonating at 11.6 kHz for over 
two years when measuring the damping of metals at cyclic stresses up to their fatigue limit. 

 
Figure 21: Waveguide for high power ultrasonics 

Torsion of bars 

Torsional vibration provides a lot of conceptual problems for students. The basic equations  
are the same as in axial vibration, but the sign convention is less obvious and requires very 

careful attention. 

J = polar 2nd moment of area  

 = D4 32 

G = shear modulus = E/2(1+v) 

v = Poisson's ratio 

 = density 

Torque = T = GJ


x
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 = angular displacement. 

The outward going normal in + ve x direction = positive face. 

Clockwise rotation and clockwise torque viewed in + ve x direction are positive 

x

T, 
+ ve

+ ve

face
- ve

face

x + x

T,  + ve

 
Figure 22: Element of bar in torsional oscillation 

At x, the torque acting on the element is 
T GJ

x
 





 

At x x  , the torque is: 

T T GJ
x

T

x
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






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So the net torque acting on the element is: 

 T T T GJ
x

x  
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


2

2

 

Using Newton’s second law in torsional rotation and noting that the moment of inertia of the 
element is Jρ.δx gives our equation of motion: 


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





 

G

x t

 


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2

2

2

2

 

which is very similar to that for axial vibration. 

Flexural vibration of beams 

Flexural vibration is somewhat more complicated than axial vibration. I used the Bernoulli -

Euler theory for the bending of beams in which plane sections remain plane and perpendicular 
to the neutral axis. It is necessary to adopt and rigidly adhere to a strict and consistent si gn 
convention. For this reason, the sign convention was attached to the equation sheet issued to 
the students early in the course and made available to them in the exam. Other conventions  
exist and it is a matter of choice which is used. It is essential that positive and negative faces 
are clearly defined; in our convention, a positive face is where the outward going normal is in 
the positive x direction. The displacements u, v, w, are in the x, y, z directions. We have defined 
the y direction as positive downwards and the z direction as directed into the page. 
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Figure 23: Sign convention and definition of the shear force, F, and the bending 
moment, M, for flexural vibration 

From Figure 23, the net force on the element is: 

δ F = [∂F/∂x] δx 

The mass of the element is ρA δx so by using Newton’s second law and simplifying we have 
the equation of motion for the vibration of a uniform beam: 

2

2
4

4

4

t

v

x

v









  

where ρA ω2 = EIα4 

and I is the second moment of area. 

Appropriate mathematical manipulation leads us to the solution of this partial differential 
equation of the form: 

  tUtTxSxRxQxPv  sincossinhcoshsincos   

Where the constants PQRSTU are defined by the boundary conditions and 

ω = 2 πF  

and F is the frequency of oscillation. [I have F for frequency and F for shear force as there is 
an unfortunate clash of accepted nomenclature]. T and U will only be called on if there is a 
need for a transient vibration solution, but this will only be a tiny minority of cases as we are 
mainly interested in mode shapes and natural frequencies. Because we have 4 constants 
PQRS, we need 4 equations which can usually be obtained from the boundary conditions. 

At a free end, the bending moment, M, and the shear force, F, will be zero, so ∂2v/∂x2 =0 and 
∂3v/∂x3 = 0 

At a fixed end, there is no deflection and no slope, so u = 0 and ∂v/∂x = 0 

At a pinned [simply supported] end, there is no deflection and no moment, so u = 0 and ∂2v/∂x2 
=0 

Of these boundary conditions, the free end is easily obtained, but the other two are difficult, 
if not impossible, to achieve in practice. For a beam vibrating freely (no end restraints), the 

frequency equation is: 

cos αl cosh αl = 1 

x

y

M

F

+

x



 
 

F F 

+

 x

M M 

F

x x x 

M

 
 

F F 



M M 

x x 



 
 

 

 

 



Teaching Vibration to university undergraduates  
R. D. Adams 

Journal on Teaching Engineering, 1:1 (2021) 40-93 61 

The solution of this equation cannot be obtained explicitly and needs to be solved numerically. 
Figure 24 gives the mode shapes and the nodal positions for the first five modes of vibration. 
The constant B is used to define the natural frequency using the equation: 

  2

Bdc
F Hz   

where  is the length of the beam, d is its thickness, and Ec  . 

 
Figure 24: Mode shapes, nodal positions, and frequency numeric for the first 5 

modes of flexural vibration of a uniform free-free beam 

Other boundary conditions, such as a mass at the end of a beam or some position along it, can 
be incorporated by using the bending moment and shear force terms from the bending of the 
beam together with Newton’s second law. But note that since point masses  do not exist, the 
results will only be approximate. It is very important that signs are carefully observed, and it 

is understood what [shear force or bending moment] is acting on which face. I give below an 
example for a mass at the end of a beam. In Figure 23, consider the element of length δx as a 
point mass. The positive shear force on the negative face [of the mass] is acting in the negative 
x direction. Using Newton’s second law, we can write: 

-F = m ∂2v/∂t2 

But since F = - EI [∂3v/∂x3]l  and  ∂2v/∂t2 = -ω2vl 

Then, EI [∂3v/∂x3]l = -m ω2vl  

I also introduced the class to the concepts of additional terms to the Bernoulli -Euler equation 

for a flexurally vibrating beam to allow for shear and rotary inertia. These terms are needed if 
the beams are thick or for predicting the frequencies of higher modes. 
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Plate vibration 

A vibrating plate is a two-dimensional system. Algebraic solutions of the equation of motion 
can only be determined for simple shapes, such as rectangles and circles, and with certain 
types of boundary conditions. For a rectangular plate in the x-y plane, the equation of motion 
is: 

 
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where w is the deflection in the z direction. This differential equation can only be solved 
explicitly for certain conditions. If the plate sides are simply supported (hinged), then the 
solution is: 
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sincossinsin
1 1

 






  
where a and b are the side lengths in the x and y directions, and m and n define the number 
of half waves in the x and y directions. It is very difficult to create simply supported or clamped 

edges in practice, although free edges are easily achieved. 

At this point, I showed a Rolls-Royce fan blade to show the challenge of predicting the natural 
frequencies of a real structure and thanked the inventors of fast digital computers for enabling 

the solution via Finite Element Analysis. I also demonstrated a musical saw [a common wood 

saw], which has some interesting characteristics. As a tapered flat sheet of steel terminated 
in a wooden handle, it has a variety of natural frequencies. The saw has 3 edges free and the 
fourth has an uncertain termination and is heavily damped because of the handle and how it 
is held. However, when the blade is bent into an “S” shape, the damping is very small and it is 
possible to play musical notes when stroking one of the long free edges with a ‘cello bow, or 
even a wooden rod. On one occasion, the students filmed me playing the saw [sitting on a 
chair which was on a table] and sent it to their non-engineering friends to show that 
engineering lectures were not boring! 

Rayleigh’s method for continuous systems 

Continuous systems, such as rods, beams, and plates, present some challenging , and often 
impossible, problems to solve by conventional algebra. Numerical solutions based on 

Rayleigh’s method are particularly useful in predicting natural frequencies, especially the 
fundamental frequency. The same principles apply as with lumped systems. In particular, the 

better the guessed mode shape, the more accurate is the frequency prediction. Knowledge of 
Rayleigh’s method can be tested in examinations, so it is worth teaching both for knowledge 

and assessment purposes. 

Using a fixed-free bar in axial vibration as an example, it can show that by using a ¼ sine wave 
as the mode shape, the exact natural frequency is obtained. This is not surprising but is a 
useful demonstration of how Rayleigh’s method works. But a linear mode shape where the 
displacement is proportional to x gives an error of only 10.25%, even though it violates the 
boundary condition [zero strain] at the free end of the bar. On the other hand, using the 
statically deflected shape, in which the bar hangs under gravity from the fixed end, gives an 
error of only 0.635% as this mode shape satisfies the boundary conditions at both ends. Of 
course, the algebraic computation is much greater than for the linear option. But whereas the 
case with a mass on the end of a bar needed and graphical/numerical solution, an example 
with a linear mode shape and a mass equal to that of a bar could be solved in a few lines with 
an error of less than 1%. 
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For flexural vibration, a cantilever was used as an example. Note that there are now 4 
boundary conditions to satisfy. A variety of mode shapes was used. The statically deflected 
shape gave an error of less than 1%, a cosine-based shape had an error of 1.5% while a 
parabola gave an error of over 25%. 

With plates, boundary conditions other than all simply supported generally have to be solved 
numerically using beam functions and Rayleigh’s method. These days, computer solutions 
using finite element analysis are normally used to obtain natural frequencies and mode 
shapes. In practice, circular plates supported on razor blades are the nearest real situation to 
the mathematics. Using such a support system for rectangular plates poses problems of 

rotation at the corners which can be partially solved by omitting the supports near to the 
corners. 

Non-linear vibration 

A topic which is important when it comes to testing resonant systems concerns non-linearity. 

This has been extensively covered by many authors and quickly slips into complex 
mathematics if other than a qualitative system is considered. In effect, there are softening 
springs and stiffening springs. With softening springs, the resonant frequency decreases with 
amplitude, while the opposite is true for stiffening springs. With a linear system, there is only 
one response amplitude for a given frequency. However, in non-linear systems, depending on 
the level of damping there can be three possible amplitudes near to resonance. As the driving 
frequency is increased towards resonance for a softening spring, the amplitude of vibration 

will suddenly increase [jump] from A to B as shown in Figure 25, and then decrease without 
reaching the resonant amplitude. When the frequency is decreased from above resonance, 

the resonant amplitude will be reached and then decrease as the frequency is reduced before 
there is a sudden jump downwards from C to D. The part of the response curve from A to C 

can never be found in practice. A stiffening spring slopes the other way and also gives the 
jump phenomenon. For what it is worth, one of the few laboratory practicals I can remember 

from undergraduate days concerned the flexural vibration of a simply-supported beam which 
was excited at its mid point by an out of balance mass driven by an electric motor. Because 

the “simple supports” were very firmly clamped knife edges, deflection of the beam induced 
tensile forces which gave a stiffening characteristic. I spent much of my Easter vacation trying 

to find out why my experimental results did not conform to the expected Frequency Response 

Function for a linear system and to explain what had happened. Frustrating, but I learned a 
lot! 

 
Figure 25: Frequency response function for a softening spring 
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Beyond a simple, qualitative description of nonlinearity and how it affects the resonant 
response, the algebra ascends [descends?] into hideous complexity which is completely 
unjustified for an undergraduate course. 

Examples classes 

Most courses will provide questions following the lectures so that students can test 

themselves on their understanding our the course. 

In year 2, there was a one-hour examples class to support each lecture. In these classes, which 

usually followed the lecture, the students were issued with sheets of questions which were 
typical [usually actual] exam questions. However, it is important to grade the questions so that 

the first few are rather easier to give students confidence in tackling the paper. Attendance at 
the classes was optional and no records were kept on attendance. I was always at these classes 

to provide help to the students, two or three minutes being enough for me to see a difficulty 
and to help resolve it. From time to time, I tried using postgraduates [PhD students or post 

docs] to assist me, but I found that they spent too much time and often caused more 
confusion. As the classes were rarely more than 30 students [optional attendance], I preferred 
to be the lone assistant. There was, of course, a significant amount of self-help between the 
students themselves. In year 2, the numerical answers were given out, but not the worked 
solutions. A set of typical examples sheet is given in the Supplementary Information: 
[SI_Continuous_systems_example_sheets, 
SI_Lumped_parameter_Introductory_Example_sheets_1A&2A, 

SI_Lumped_parameter_Examples_sheets]. 

In year 3, the Department did not timetable examples classes, but I was available in my office 

to help at a specified time. I gave out worked solutions but only much after the question 
sheets. I found that if such solutions were made available with the question sheets, there was 
a tendency to skim through the solution but not to understand the basics. As always, the 
students have a wide range of ability and motivation, and have their own agendas and 
timescales. That’s life, but sometimes people have to be protected from themselves. 

For both courses, the exams consisted of a three hour paper following completion of the 

lecture course. The students were not allowed books or notes but were issued with the same 
crib sheet they had been working with during the year. Exam papers from previous years were 

available and students were issued with the answers and some worked solutions. 

Laboratory Classes 

One of my professors, G F C Rogers, a thermodynamicist who wrote a well-known book with 

Y R Mayhew, challenged me when I joined the Department to introduce at least one new 
laboratory experiment each year. Rogers was a great believer in the benefit of laboratory 

experiments in developing the understanding of engineering principles. There were many 
discussions as to whether the laboratory classes should come after the relevant lecture or 
before it. The conclusion was that there were benefits both ways and realistic problems of 

space, equipment, and the timetable meant that some students had the lectures before, and 
some after and it did not seem to make a lot of difference in the long run. 

To support my vibration lectures, I created a series of laboratory classes [most of the other 

courses did the same]. These were to help the students to see the lectures from a new 
perspective. The classes were staffed mainly by PhD students [from my own group] but I had 

a wandering wizard role to check that all was going smoothly and to add a few words of [I 
hope] enrichment. Lab sheets were issued to help the students and to guide them into what 

they might discover from their experience. The students worked in groups of 4 as there was 
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only limited equipment available. While the lazy student might sometimes slip into the 
background, it was excellent practice for team working. A couple of typical lab sheet is given 
in the Supplementary information for each part of the course 
[SI_2nd_year_vibrations_lab_2DoF_sheets and SI_3rd-year-vibrations-lab-plates_sheets]. 

At one stage, I added an “applied” part to the standard experiment. In one case, I had a Mini 
exhaust system, excited by a rotating out of balance device, which the students examined for 
resonances and where it was best to mount the rubber suspension so as to minimise 
transmission to the vehicle body; it turned out that the manufacturer had got it right. In 
another example, two car doors were examined for vibration response. One door was just the 

metal [body in white] and the other was fully trimmed inside. Timetable constraints eventually 
saw the end of these additions… 

Sadly, academic time is increasingly being consumed by the demands of research and 
pointless administration. Also, undergraduate laboratories need space which is not used for 
the whole year. Consequently, undergraduate laboratory classes are being slowly dropped 
from the timetable in many universities. We always need to change with the times and my 
own experimental programme was new once and often replaced earlier experiments. The 
laboratory classes are an essential part of bringing an understanding of the mathematical 
content of the lecture courses. The course lecturer cannot run each experiment, but must be 
seen, even as a wandering wizard, several times during the class. 

4. Conclusions 

I hope the reader will find the above useful as a basis for his/her own teaching of a course in 
vibration. My lecture course was developed over many years and you see above the finished 

product. It fitted into the time allowed by the timetable and was aimed at stretching the 
intellect of the students, while not trying to blind them with difficult mathematics. You can 

add to it or subtract from it to suit your enthusiasm, experience, and the time available. But, 
above all, you must work to enjoy your presentation and always give it 100% effort. Do not be 

afraid to deviate and recount [briefly] some relevant experience or to tell a joke. Yes, I did sit 
in a bar in New Orleans watching an out of balance ceiling fan and wondering how I could 

make it into an exam question, and the Ogden Nash contribution to the compatibility of forces 
and displacements is left to your literary research. 
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Supplementary information: SI_Crib sheets_2_and_3 

 

UNIVERSITY OF BRISTOL 

Department of Mechanical Engineering 
 

Notes which may be used in the Vibrations 2M examination. 
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Abutment excitation 
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Two-degrees-of-freedom: 
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UNIVERSITY OF BRISTOL 

Department of Mechanical Engineering 
 

Notes which may be used in the Vibrations 3M examination. 
 

Axial Vibration 
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Torsional Vibration 
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Flexural Vibration 
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Strain Energy 

 Direct, W = 2/2E per unit volume 
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Plate Vibration 
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For a simply supported plate of sides a and b, 
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Sign Convention for Flexure 

 

Positive forces and moments acting on positive and negative faces 

 

 

 

 

x

y

M

F

+

x



 
 

F F 

+

 x

M M 

F

x x x 

M

 
 

F F 



M M 

x x 



 
 

 

 

 

 

 

M EI
v

x

F EI
v

x



 









2

2

3

3

 



Teaching Vibration to university undergraduates  
R. D. Adams 

Journal on Teaching Engineering, 1:1 (2021) 40-93 70 

Supplementary information: SI_Continuous_systems_example_sheets 

 

UNIVERSITY OF BRISTOL 

Department of Mechanical Engineering 

 

APPLIED MECHANICS - Axial Vibration 

 

Tutorial Sheet 1 

 

1. An axially-vibrating system consists of n rigid masses, m, connected by n - 1 springs each 

of stiffness k. If n >> 1, this system may be modelled as a uniform bar of length l and cross-
sectional area A made from a material of density  and Young's modulus E. 

An ore-train consisting of 100 trucks, each weighing 30 tonnes is close-coupled such that 
the buffers are in a state of compression. Each truck has a pair of buffers at each end. 

Each buffer has an effective spring stiffness of 1.2 x 106 N/m. 

Assuming that the buffers have sufficient pre-compression that they do not separate, 
calculate the fundamental longitudinal natural frequency of the system. 

(Ans: 3.1623 x 10-2 Hz) 

 
 

2. (Fig. Q2) A steel bar of length 250 mm and radius 10 mm is  vibrating in its fundamental 
axial free/free mode of vibration, such that the amplitude at a free end is 0.1 mm. 

Calculate the frequency of vibration and the cyclic axial strain amplitude at the mid-point 
of the bar. 

The bar is horizontal and it is observed that if a loop of light wire is put on the bar near 
either end, as shown in Fig. Q2, it moves along the bar and stops at the mid-point. Explain 

why this should happen. 

For steel, E = 210 GPa,  = 7.8 x 103 kg m-3 

Poisson's ratio = 0.29 

The acceleration due to gravity is 9.81 m s -2. 

(Ans: 10.38 kHz, 1.257 x 10-3) 

 

 

 
 

 
  

Fig. Q2
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3. Calculate the fundamental axial frequency of the free-free steel bar sketched below. The 
bar is stepped, as shown, and has a circular cross-section. 

 

 
 

For steel, E = 210 GPa,  = 7.8 x 103 kg m-3 

You may neglect Poisson's ratio effects. 

(Ans: 9143 Hz) 
 
 

4. The stepped, steel bar shown in Fig. Q4 vibrates in its fundamental axial mode.  

Determine the frequency. The velocity of sound in steel may be taken as 5189 m/s and 
lateral motion may be neglected. Sketch the mode shape. 

 

 

(Ans: 5157 Hz) 

 

100 100200







All dimensions in mm.

400 200

10 5 

All dimensions in mm.

Fig. Q4
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UNIVERSITY OF BRISTOL 

Department of Mechanical Engineering 
 

APPLIED MECHANICS - Flexural Vibration 

 

Tutorial Sheet 2 
 

1. Determine the frequency equation of a uniform beam which is simply-supported at the 
ends and vibrates in flexure. 

A footbridge has a simply-supported span of 10 m and is carried on two rolled steel joists, 

each of which weighs 67 kg m-1 and has a second moment of area of 2.64 x 10-4 m4. The 

platform of the bridge weighs 200 kg m-1 and makes no contribution to the stiffness. 

Determine the lowest frequency of bending vibration (in the vertical plane) of the bridge.  

Esteel = 207 GN m-2. 

(Ans: 8.9856 Hz) 
 

 

2. Derive the frequency equation for the transverse vibration of a uniform beam of length l 

with one end built in and the other simply supported as shown in Fig. Q2. 

If the transverse stiffness of the simply supported end were finite rather than infinite, 

would you expect the fundamental frequency to be increased or reduced (argue 
physically, not by repeating the problem with different boundary conditions)? 

 

o

l

Fig.Q2

 
 

(Ans: tan l = tanh l) 
 
 

3. The transverse vibration model of a portal frame milling machine is shown in Fig. Q3. The 

columns are pin-jointed at one end and bolted rigidly to a stiff, heavy cross beam at the 
other end. The cross beam has twice the mass of each column and prevents any significant 

rotation of the column end faces. 
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Derive the frequency equation for the structure and determine the fundamental natural 
frequency. Each column has the parameters ascribed to it in Fig. Q3. 

(Ans: 2 = l(tan l - tanh l); l = 1.19;  = ) 

 
 

4. A helicopter rotor blade may be regarded as a uniform beam which is simply supported 
at one end and free at the other. The equivalent beam is 4.57 m long with a second 
moment of area of 8.33 x 10-8 m4 and a cross-sectional area of 2.9 x 10-3 m2. The rotor 
blade is made of an aluminium alloy for which Young's modulus is 71 GPa and the density 
if 2.63 x 103 kg/m3. 

Find the natural frequencies of transverse vibration in the first and second modes. 

(Ans: 3.272 Hz, 10.603 Hz.) 

 
 

5. A cantilever is driven in flexural vibration by an electrical coil mounted at its free end and 

moving in the field of a magnet. The coil has been so designed that its mass is  sufficiently 
small that it may be neglected but unfortunately this resulted in the moment of inertia of 

the coil being by no means negligible. 

For the beam, Young's modulus is E, the density is  its length is l and the second moment 

of inertia is I. The moment of inertia of the coil about an axis through its centre of gravity 
(which coincides with the end of the beam) perpendicular to the plane of vibration is J. 

Determine the frequency equation for this system. If the frequency equation of a 
cantilever with a completely free end is  

 

and this has as its first solution that l = 1.875, indicate whether the addition of the coil 

will lead to an increase or a decrease in fundamental frequency of the cantilever. 

(Ans: ) 

  

E, I, A,

Fig. Q3
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UNIVERSITY OF BRISTOL 

Department of Mechanical Engineering 

 

APPLIED MECHANICS - Rayleigh 

 

Tutorial No. 3 

1. A two-stage rocket has been modified to place a large 

space-laboratory in orbit. The payload may be regarded as a rigid 
mass attached to the second stage, as shown in Fig. Q1. The mass 

m of the payload is equal to that of the second stage. 

 Use Rayleigh's method to determine the fundamental 
frequency of axial vibration after lift-off. Credit will be given for 
using a realistic mode shape. 

 

 

m
PAYLOAD

SECOND STAGE

E, A,

4E, 2A,

2l

l




FIRST STAGE

FIG. Q1  
(Ans: Exact solution is  1 097 . c / rad / s  

     where c = E /  ) 

 

2. A ship at sea can vibrate in several modes. One mode is usually laterally as a free-free 

uniform beam. Using Rayleigh's method, determine the fundamental frequency of lateral 
vibration for a free-free uniform beam of length   which has a flexural rigidity EI and a 

uniform weight of  per unit length. The lateral deformation can be described 
approximately by the equation 

v  3 sin  -  2


















b

x


 

where b is the maximum lateral deflection at mid ship. 

Sketch the mode shape. 

(Ans: Exact solution is: 


 =  22.37 rad / s
EI

4
 

Rayleigh   


 =  22.57 rad / s
EI

4
) 

 

3. A compressor blade in a gas turbine can be simulated for vibration analysis by a cantilever 
of length  , constant width b and depth varying linearly from d at the root to zero at the 
tip. Estimate the first natural frequency of transverse vibration, in the direction of the 
depth, using Rayleigh's method and assuming the dynamic deflected shape to be the 
same as the static. 

Take Young's Modulus and density of the material as E and  respectively. 

(Ans:  
 

n rad / s Hz 1581 0 2516
2 2

. .
d E d E

 
) 
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UNIVERSITY OF BRISTOL 

Department of Mechanical Engineering 
 

APPLIED MECHANICS - Plate Vibration 
 

Tutorial Sheet 4 
 

1. A rectangular steel, simply-supported plate has sides of length 3 m and 2 m and a 
thickness of 10 mm. Determine the natural frequencies of the first three modes of 

transverse vibration and sketch the corresponding nodal lines. 
 

 For steel,  E = 210 GN/m2 

   = 7850 kg/m3 

   = 0.30 

(Ans: (i) 8.878 Hz; (ii) 17.07 Hz; (iii) 27.32 Hz; (iv) 30.37 Hz) 
 

 

2. Part of the deck of a ship may be regarded as a simply-supported rectangular plate of 
thickness 25 mm and has sides of length 4 m and 10 m. Determine the natural frequencies  

and mode shapes of the first three modes of vibration. 

What action would you recommend for reducing the response of the deck to an oscillation 
of frequency 6.5 Hz caused by motion transmitted through the supports from a nearby 
auxiliary equipment room? 

The plate is made of steel for which E = 210 GPa,  = 7850 kg m-3 and  = 0.30. 

(Ans: 4.456 Hz, 6.300 Hz, 9.373 Hz) 
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Supplementary information: 
SI_Lumped_parameter_Introductory_Example_sheets_1A&2A 

 

These “A” questions were used to provide a confidence building exercise to the later 
question sheets. 

 

VIBRATIONS 2M 

 

Example Sheet 1A 

 

1. A mass of 20 kg is supported by a spring of stiffness 10 kN/m. What is the undamped 
natural frequency 

 (a) in rad/s, 

(b) in Hz? 

Ans: 22.361 rad/s, 3.559 Hz. 

 
 

2. A dashpot is added to the system in Q1 such that the proportion of critical damping, c, is 

0.1. What is the dashpot constant, f ? 

Ans: 89.44 Ns/m. 

 
 

3. What is the damped natural frequency (i.e. for free vibration) of the system described in 
Q1 and Q2? 

Ans: 22.249 rad/s, 3.541 Hz. 
 
 

4. What is the period of the undamped and the damped systems? 

Ans: 0.281 s, 0.2824 s. 
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VIBRATIONS 2M 

 

Example Sheet 2A 

 

1. A cyclic force of 10 N acts on a mass of 10 kg which is supported by a spring of stiffness 

10 kN/m. A damper is in parallel with the spring such that c = 0.1. 

What is the undamped natural frequency? 

What is the damped natural frequency? 

What is the resonant frequency, i.e. the frequency at which the maximum amplitude of 
oscillation is reached? What is this maximum amplitude? 

Sketch the frequency response function, noting the amplitude of vibration at zero 

frequency, resonance, 0.5 n , 2 n , 5 n , and 10 n . 

Ans: 5.033 Hz, 5.0077 Hz, 4.982 Hz, 5 mm. 
 

 

2. A vibrating system experiences a cyclic force due to a rotating out of balance mas s of 2 kg 
at a radius of 5 mm. What is the magnitude of the exciting force at 1 Hz, 5 Hz and 20 Hz? 

Ans: 0.3948 N, 9.87 N, 157.9 N. 
 

 

3. In a vibrating system, a spring of stiffness 25 kN/m is in parallel with a viscous damper 
which has a constant of 100 Ns/m. The system is vibrating at 25 Hz. What is the force 
transmitted to the surroundings 

 

(a) in the spring, 

(b) in the dashpot, 

(c) in total, 

 

If the amplitude of vibration is 10 mm? 
 

Ans: 250 N, 157 N, 295.25 N. 
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Supplementary information: SI_Lumped_parameter_Examples_sheets 

 

Department of Mechanical Engineering 

 

VIBRATIONS 2M 

 

Sheet 1 - Free Vibration 

 

1. In a certain ballistics test, a bullet of mass 0.05 kg is fired horizontally into a sand box of 
mass 100 kg. The sand box can move horizontally on rails and is restrained by a spring and 

dashpot such that the undamped natural frequency is 1 Hz and the damping is 10% of 
critical. 

Records from one test indicated that the sand box had a maximum displacement of 0.3 m 
from the equilibrium position. What was the velocity of the bullet just before it struck the 

box? 

(Ans: 4373 m/s) 
 
 

2. A door is closed under the control of a spring and dashpot. The spring gives a torque of 

13.5 Nm when the door is shut and has a stiffness of 50 Nm rad-1. The dashpot gives a 
damping torque of 100 Nm s rad-1. The moment of inertia of the door about its hinges is 

90 kg m2. 

If the door is opened to 90°, show that it takes a little under 3.6 seconds for it to close. 
 
 

3. Supplies are parachuted from an aircraft in an experimental container which consists 

essentially of a spring of stiffness 20 kN m-1 in parallel with a viscous damper of which 
the dashpot constant is 4472 N s m-1. The free ends of the spring and dashpot are 
connected together to a light plate which is so designed that it is held firmly by the ground 

after the first contact. The spring/dashpot combination is arranged to give a total free 
travel of 1 m. 

The specification requires that the spring/dashpot combination should not "bottom" (so 
as to avoid excessive shocks) and that undue oscillation should not occur after impact. If 

the total mass of the container and supplies is 1000 kg and the terminal velocity of the 

parachute descent is 5 m s-1, will the specification be met? 

 

(0.409 m, 0.5095 m are key values in your solution) 
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Department of Mechanical Engineering 
 

VIBRATIONS 2M 

Sheet 1 
 

1. The rotor of a galvanometer is restrained torsionally by a spiral hairspring and a viscous 
torsional damper. When the rotor is in its normal position of equilibrium, the pointer 

indicates zero on the scale of the instrument. The scale is graduated in equal divisions and 
the pointer reads 100 divisions when the rotor has turned through 40º, the torque 

required to hold the rotor in this position being 1.25 N m. When the rotor is released 
from rest in this position, the pointer swings to a reading of -10 divisions and then +1 

division, the time for each swing being 2 s. 

What is the moment of inertia of the rotor and the undamped natural frequency of the 
system? If it were required to make the motion aperiodic, by how much must the damping 
be increased? 

Ans: 0.472 x 10-6 kg m2;    0.31 Hz (1.947 rad/s);    1.69 times. 

 
 

2. A door is closed under the control of a spring and dashpot. The spring gives a torque of 
13.5 Nm when the door is shut and has a stiffness of 50 Nm rad-1. The dashpot gives a 
damping torque of 100 Nm s rad-1. The moment of inertia of the door about its hinges is 
90 kg m2. 

Derive an expression for the motion of the door when it is opened 90 degrees and 
released from rest, and show that it takes a little under 3.6 seconds to close. 

Ans: e-0.5555t (1.8408 cos 0.4969t + 2.0580 sin 0.4969t) (rads) 

 

 

3. Supplies are parachuted from an aircraft in an experimental container which consists 
essentially of a spring of stiffness 20 kN m-1 in parallel with a viscous damper of which the 
dashpot constant is 4472 N s m-1. The free ends of the spring and dashpot are connected 

together to a light plate which is so designed that it is held firmly by the ground after the 
first contact. The spring/dashpot combination is arranged to give a total free travel of 1 

m. 

The specification requires that the spring/dashpot combination should not "bottom" (so 
as to avoid excessive shocks) and that undue oscillation should not occur after impact. If 
the total mass of the container and supplies is 1000 kg and the terminal velocity of the 
parachute descent is 5 m s -1, will the specification be met? 

(Yes, 0.409 m, 0.5095 m are key values in your solution) 
 

 

4. A motor car of mass 1000 kg has its weight equally distributed on its four wheels. Before 
fitting the shock absorbers, the car was found to oscillate vertically with a natural 
frequency of 0.5 Hz. What is the spring rate for each wheel? Determine the dashpot 
constant to give the vehicle 40% critical damping. 
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When travelling at 120 km/h, the car is driven along a road where there is a sudden drop 
in level of 50 mm. Determine the equation of motion of the ensuing vibration about the 
new equilibrium position. After one complete oscillation, how far will the car have 
travelled and what will be the displacement relative to this new equilibrium position? 

Ans: 2467.4 N/m 628.32 Ns/m 

u = e-1.2566t [-50 cos 2.8793t - 21.822 sin 2.8793t] (mm) 

72.74 m, -3.2217 mm 

Nov-94 
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Department of Mechanical Engineering 
 

VIBRATIONS 2M 
 

Sheet 2 

 

1. A mass of 100 kg is attached to a rigid support by a spring of stiffness 16,000 N/m and is 
subjected to a harmonic force of amplitude 30 N at the undamped natural frequency. The 
damping may be considered to be viscous with a coefficient of 300 N.sec m-1. Determine 

(a) the undamped natural frequency, (b) the damped natural frequency, (c) the resonant 
frequency, (d) the amplitude of the motion of the mass, (e) the phase of the motion 

relative to the impressed force, and (f) the force transmitted to the support. 

Ans: (a)  2.013 Hz,    (b)  1.999 Hz,    (c)  1.985 Hz,    (d) 7.906 mm, 

(e)  90º,    (f)  131 N. 

 
 

2. A printing press weighs 1.8 tonnes and generates a fundamental disturbing force of 2000 
N amplitude at a frequency of 1450 c/min. It is supported on four mountings each carrying 
an equal proportion of the total load. Each mounting has a spring rate of 1.3 x 106 N/m 
and gives viscous damping with a damping ratio of 0.1 times critical. 

Determine the amplitude of vertical motion of the press and the amplitude of the force 

transmitted to the foundations. 

Ans: 5.48 x 10-5 m,    328 N. 

 
 

3. A machine of mass 550 kg is supported on rubber mountings which provide a force 

proportional to the displacement of 210 kN m-1 together with a viscous damping force. 
The machine gives an exciting force of the form R 2 cos t, where R is a constant. At very 

high rotational speeds, the measured amplitude of vibration was 0.25 mm while the 
maximum amplitude recorded as the speed was slowly increased from zero was 2 mm. 

Determine the value of R and the damping ratio c. 

Ans: 0.1375 kg m,    0.0626. 
 
 

4. A car plus driver travels over an inferior road surface which has an amplitude of 10 mm 

and a wavelength of 20 m. The car has a mass of 800 kg and each of the four springs has 
a stiffness of 10 000 N/m. The net viscous damping ratio for the car and suspension gives 

c = 0.25. Over what range of speeds will the steady state amplitude exceed 20 mm? What 
speed needs to be exceeded if the steady state amplitude is to be reduced to below 2 

mm? 

Ans: 18 to 24.4 m/s,    72.3 m/s. 
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5. It has been decided to install a precision optical machine in a building near a busy railway 
line. In the only room available for the machine, it was found that significant vibration 
levels were caused by passing trains. Analysis of the signals over a period showed that 
two frequencies predominated, 24 Hz and 11 Hz. At 24 Hz, the peak acceleration was 0.6 
g, while at 11 Hz the peak acceleration was 0.4 g. 

The maximum vibration levels permitted for the optical machine were 0.2 mm peak 
displacement up to 15 Hz, and 18.85 mm/s peak velocity from 15 to 100 Hz. 

An engineering consultant suggested that the machine be mounted on springs. The 
system chosen provided an undamped natural frequency of 5 Hz and 20% of critical 

damping. Would this solution be satisfactory? If not, what would you suggest? 

Ans: No, it is not satisfactory and the undamped natural frequency needs to be 

reduced to about 4 Hz. 
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Department of Mechanical Engineering 

 

VIBRATIONS 2M 

 

Sheet 3 
 

1.  

 

 m
k n k 2 k

2m     

 
Fig. Q1 

 

Figure.Q1 shows a system which is constrained to vibrate axially. Show that one of the 

natural frequencies and both of the mode shapes are independent of the constant n. 

Ans: 1
2 = k/m (rad/s)2 ; 2

2 = k(2 + 3n)/2m (rad/s)2 

 (u1/u2)1 = 1   ; (u1/u2)2 = -2 
 
 

2. Determine the natural frequencies and the corresponding mode shapes of the fixed-fixed, 
two degrees of freedom system sketched in Fig. Q2. 

k 3 k 5 k

4m m

 
Fig. Q2 

Ans: f1 = 0.1325 k / m  Hz ; f2 = 0.4589 k / m  (Hz) 

 (u1/u2)1 = 0.4105  ; (u1/u2)2 = -9.744 
 

 

3. A system vibrating axially can be represented by two discrete masses 2 kg and 4 kg, 

attached to separate abutments by springs of stiffness 1.106 N/m and 3.106 N/m 
respectively, and connected to each other by a spring of stiffness 2.106 N/m. If the 

deflection of the connecting spring is 0.5 mm when the system is vibrating in its second 
mode, what is the amplitude of displacement of the 2 kg mass? 

Ans: 3. 0.31 mm 
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4. A machine may be modelled as the two degree of freedom system sketched in Fig. Q4. 
The excitation is equivalent to a force P cos t (where P = 50N) acting on the 10 kg mass 

as shown. Determine the resonant frequencies 1 and 2 and the amplitude of motion of 

the 10 kg mass at a frequency of (1 + 2)/2. What is the value of the detuned frequency? 

 

10 kg

1 kg

P cost

k

k

1

2
Fig. Q4

 
 

     k1 = k2 = 10 kN m-1 

 

Ans: 1 = 30.16 rad/s  ; 2 = 105.35 rad/s 

 1.1295 mm   ; det = 100 rad/s 

 

8 March '95  
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Supplementary information: SI_2nd_year_vibrations_lab_2DoF_sheets 
 

Second Year Vibrations Laboratory 
 

One and Two Degree of Freedom Systems 

AIMS 

To allow you to explore and investigate the vibration characteristics of simple one and two 
degree of freedom (DoF) systems. Also, to allow you to become familiar with standard 

vibration measurement equipment. 

The lab will take approximately 2 1/2 hours to complete. 

 

REPORTING REQUIREMENTS 

(1) Details of the measurements taken and calculations made should be included in your lab 
book. This will need to be marked by the lab demonstrator before you leave. 

(2) Your report should include the following in the discussion; 

For the l DoF system, discuss the agreement between the experimental results and the 
theoretical prediction. Is the experimental system a simple spring-mass-damper system? 

In the light of the results of the 2 DoF system, discuss how a second mass and spring can be 
added to a one degree of freedom system to reduce vibration at a given frequency (see 

Appendix 2 for details of the theory). 
 

OVERVIEW 

Although it may be possible to analyse the complete dynamic response of a system, this often 
leads to complex analysis and the production of large amounts of data. Even if the full dynamic 

response is required, a first step in any vibrational analysis is to attempt to model the system 
as either a one or a two degree of freedom system. In this way, much physical insight can be 

gained and the results act as a useful check on the full results produced later. 

When modelling a real system, simplifying assumptions are made. For example, a distributed 

mass maybe considered as a lumped mass, the effect of damping may be ignored, a non-linear 
spring may be assumed to be linear over a limited range of motion, and the possible directions  
of motion restricted. As with any modelling, there is a compromise between simplicity and 
accuracy. 

 

PART 1 - ONE DEGREE OF FREEDOM SYSTEM 
 

Introduction 

Figure 1(a) shows the apparatus used in this experiment. This a close approximation to a one 

degree of freedom system which is shown schematically in Figure 1(b) and consists of a Mass 
(acceleration proportional to net external force), a Spring (force proportional to 

displacement), and    a Damper (force proportional to velocity). 

At low frequency (low acceleration), when the force required to accelerate the mass is low, 
the spring stiffness dominates the motion (‘stiffness controlled’). At high frequency (high 

acceleration), the mass dominates (‘mass controlled’). Between these ‘high’ and ‘low’ 
frequency regions, the mass and stiffness cancel each other out when they are opposite in 
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phases and equal in magnitude. At this point, the excitation force has only to overcome the 
‘damping’ or viscosity term. If this is small, the motion of the system becomes very large, as 
the applied force builds up resonant vibrational energy. Most resonant behaviour will have 
some mechanism of this kind underlying it; one of the skills of the vibration engineer is that 
of identifying and determining the effective ‘size’ of the three fundamental components for 

any practical case. You need to decide what is acting as a stiffness, what as a mass and what 
as a damping term. 
 

 

Apparatus 

The system has the following features, 

 The mass of the moving system consists not only of the block of aluminium and its copper 
insert, but also of the permanent magnet which is used to interact with the a.c. field 

produced by current flowing in the coil, thus giving a cyclic force. 

 The spring is, in fact, four equal beam springs (one for each ‘leg’) - these all act together 
as one but may only be linear for small displacements. 

 Induced eddy currents are used to provide damping (the copper insert is there because it 

has lower resistance than aluminium, so the eddy currents are higher, giving a greater 
damping force. 

 

 
 

 

 

Piezoelectric 
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 The applied force is independent of the position of the mass only so long as the coil fills 
the gap of the magnet. This limits the validity of the simple model to small amplitudes. 

In addition, the following instrumentation is provided. 

 A sine wave generator connected to a power amplifier, the output of which is fed to the 
coil to induce the electromagnetic excitation force. Note that the coil can only take 

currents up to 0.1 amp, so take care to monitor this. 
 A piezoelectric accelerometer mounted on a small magnet (to be placed on the mass) and 

connected to a preamplifier. The calibration will have been set for m/s2. The output is 
connected in turn to an oscilloscope and a voltmeter so that the vibration response of the 

system can be measured. 
 An ammeter to measure the d.c. current to the damping coil. 

 

Experimental Procedure (One Degree of Freedom) 

(1) Familiarise yourself with the equipment (the lab demonstrator will help you. 
 

(2) Perform a coarse frequency sweep with zero damper current to find the approximate 
resonance frequency. Note: the fastest way to find the resonance frequency is to make 

a rough plot as you go along. 
 

(3) Carry out a finer frequency sweep in the region of the resonance frequency. 
 

(4) Use the half power point method to determine the damping ratio of the system (see 
Appendix). 

 

(5) Vary the damper current and observe the effects on the resonance amplitude, û, and 

frequency, Fres PlOt graphs of û and Fres against the damper current up the maximum 
value advised by the demonstrator. Comment on the results. 

 

PART 2 - TW0 DEGREES OF FREEDOM SYSTEM 
 

Introduction 

If there is more than one independent mass in a system, it may begin to exhibit more complex 
behaviour. There are several ways in which even a small number of extra components can be 

interconnected. We have constructed one of the simplest, which in its practical form is shown 
in Figure 2(a). Such a system can be represented by the block diagram shown in Figure 2(b) 
and a simple mathematical model constructed. 

 

Apparatus 

In addition to the apparatus described in Part 1, a second mass is now added to the one degree 
of freedom system. The vibration response of this mass is monitored with a second 
accelerometer which should be connected via a preamp to channel 2 of the oscilloscope. 
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Figure 2 (a) Experimental apparatus used for two degrees of freedom system and  

(b) schematic diagram of the components of a two degrees of freedom 
model. 

 

Experimental Procedure (2 Degrees of Freedom) 

(1) Check the frequency response function for the single mass. 
 

(2) Connect the second mass and the additional accelerometer. 
 

(3) Perform the same frequency sweeps as for the 1 DoF system. For this system you will see 

two resonance frequencies with a detuned zone between them. 
 

(4) Focus finer sweeps on the two resonant frequencies and the detuned zone. 

 

USE OF THE SPREADSHEET 
(1) You will be given the two masses. 
 

(2) Input the data for the 1 DoF system and the 2 DoF system, being careful to place the 
correct amplitude in the correct column for the 2 DoF. Note: input the data only in the 
blue cells. Do not change the yellow cells. 

 

(3) For the 1 DoF system, adjust the theoretical values for the spring constants, damping 
constants and excitation force to fit the theoretical curve to the experimental data. Note 
that the theoretical values you input for the I DoF system will be transported 
automatically across for use in the 2 DoF models. 
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2 

Appendix 

 

THE DETUNED FREQUENCY OF A TWO DEGREES OF FREEDOM SYSTEM 
 

The amplitude-frequency characteristic of the two degrees of freedom system has two 

resonances (amplitude peaks). In addition there is a frequency at which an amplitude 
minimum occurs called the detuned frequency. In Figure 2(b), the mass mI is being forced 

to oscillate at an angular frequency, cv, by a cyclic force, Pcoscvt. Because, m1 and m2 are 
connected by the spring k2, both u1 and u2 will vibrate in some collective manner. The 

equations of motion of the two masses  are: 

 

 

and for m2. By substituting, u 1 = U1 coscvt and u 2 = U 2 coscvt it can be shown that: 

U = P(kz -  m 2 cv2)  

t m1  m2  0J4   -(m2k1 +m2k2 + m1  k2  )cv2   +kl2 

 

Resonances occur when the denominator is equal to zero. Also note that when cv = k2 / 

m2 , U1 is equal to zero and the frequency at which this occurs in this two degrees of 
freedom system is called the detuned frequency. 
 

The detuned frequency concept is commonly used in vibration detuners or absorbers (an 

absorber is a damped detuner). Consider a one degree of freedom system with resonance  
at: 
 

 

With the addition of an extra spring and mass, this system can be converted into a two 
degrees of freedom system. The above equation for U1 will now determine the amplitude 
of vibration of the first mass and, when the numerator equals zero, there will be no 
vibration. The situation for no vibration is when: 

 

By choosing the values of the new spring and mass, then this zero vibration can occur at any 

troublesome frequency, and even at the resonance frequency of the original system, thereby 
causing the mass m I to be at rest. 
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Supplementary information: SI_3rd-year-vibrations-lab-plates_sheets 

 

Third Year Vibrations Laboratory 

 

The Vibration Characteristics of Rectangular Plates 

AIMS 

To demonstrate the vibration characteristics (natural frequencies and mode shapes) of  free-
free rectangular plates. Also to allow you to investigate the effect of plate geometry on these 
vibration characteristics. 

The lab will take approximately 2½ hours to complete. 

 

REPORTING REQUIREMENTS 

1) In the laboratory you should detail the measurements taken and the calculations made. 
This will be checked at the end of the class. 

 

2) You should write a two side (about 600 words) executive summary of the lab. This should 

include a brief description of the aims and objectives. It should also include brief details 
of the key experimental findings and a discussion of their meaning. The experimental 

data, graphs and calculations should be attached as an appendix. 

 

OVERVIEW 

A vibrating plate is a two-dimensional system. Algebraic solutions of the equation of motion 

can only be determined for simple shapes, such as rectangles and circles, and with certain 

types of boundary conditions. For a rectangular plate in the x-y plane, the equation of motion 
is: 
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where w is the deflection in the z direction,  is the density, E is Young's modulus, ν is Poisson's 

ratio and t is time. 

 

This differential equation can only be solved explicitly for certain conditions. In particular, if 
the plate sides are simply supported (hinged), then a solution of the form: 

 tUtT
b

yn

a

xm
w

m n




sincossinsin
1 1

 








 

is possible where a and b are the side lengths in the x and y directions, m and n define the 
number of half waves in the x and y directions,  is the circular frequency ( 2  times frequency, 

F) and T and U are arbitrary constants. 
 

It is difficult to model physically the simply supported edge condition. Clamped edges are also 

difficult to realise. However, free edges can be achieved easily, the only disadvantage being 

that it is not possible to obtain an explicit algebraic function for w(x,y). However, a numerical 
solution can be obtained to determine the frequencies, mode shapes and nodal positions: 
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perhaps the most popular method of solution today is to use a finite element package, or 
some other PC-based solution. 

 

Figure 1 Mode shapes of a free-free square plate (the values of B are shown for each mode). 

A series of nodal patterns for a free-free square plate as predicted by a finite element model 
are shown in Figure 1. The constant B is used to define the natural frequency F for each mode 

using the equation, 

2 21

cd
F B

v



 

where, c is the velocity of extensional waves  E , d is the plate thickness,  is the side 

length, and v  is Poisson’s ratio. 

For non-square (rectangular) plates, the natural frequencies are related to the side lengths a 

and b. As for the square plates, the frequencies have to be predicted by numerical techniques 
as there is no explicit relationship for w(x, y) which fits the differential equation of motion and 

the boundary conditions (except for simply supported edges). 
 

When a>>b, the plate approximates to a beam and the solution is as in the Vibrating Beams 
experiment. Between the beam and square plate lies an interesting transition zone, in which 

we need to answer the question ‘What is a beam and what is a plate?’ 
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Apparatus 

The apparatus consists of three main systems, the shaker excitation system, the microphone 
-- vibration measurement system and a system for stroboscopic mode shape determination. 
The main components of these systems are, 
 

Shaker excitation system 

 Sine wave generator (low voltage) 

 Power amplifier (amplifies the sine wave and supplies alternating current to the) 
 Electromagnetic shaker (which drives the plate) 

 

Microphone vibration measurement systems 

 Microphone (‘measures’ the vibration) 

 Charge amplifier (amplifies the microphone output) 
 Oscilloscope (displays the results) 

 

Stroboscopic mode shape determination 

 Strobe light 
 Strobe exciter (triggered from the sine wave generator to ensure synchronisation) 

 

EXPERIMENTAL PROCEDURE 

 

Part 1 - Square Plate 

This experiment will demonstrate mode shapes, nodal positions, and resonance frequencies 

in square plates. 

 Determine the first six natural frequencies and the corresponding nodal patterns. Note 
that the stroboscope can be controlled to flash at the excitation frequency, thus freezing 
the mode shape. A more interesting feature is to flash at 1~3 Hz below the excitation 
frequency which causes the plate to move in slow motion. Sketch the mode shapes. 

 Compare these with the theoretical predictions. For aluminium material properties, use 

E = 70 GPa,  = 2750 kg/m3, and v = 0.35. 
 

Note that some pairs of modes occur at the same frequency but with the nodal patterns  
rotated through 90°. The observed mode will be some combination of these two modes. By 

holding the plate at a node for one of the modes (e.g. a corner), it is possible to suppress the 
other mode by damping since this corner would otherwise be an antinode. 
 

Part 2 - The Transition Series 

The transition series consists of a set of aluminium plates varying from an almost square plate 

to one which is effectively a beam. 

 For the beam, determine the first and second bending modes of vibration. Refer to the 

beam vibration experiment if you are unsure what this means. 

 Take the next narrowest plate and determine the same two bending modes. These should 
be at very similar frequencies to the original beam. 
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 Repeat this series of tests up to the almost square plate. Note the resonant frequencies 
and the nodal patterns. 

 Now, start with the nearly square plate and determine its lowest resonant frequency. This 

should give a nodal pattern similar to that for the 1,1 mode of the square plate shown in 
Figure 1. 

 Follow the transition series in reverse order compared with the first part of the 
experiment. Excite the 1,1 mode in each of the rectangular plates: you may have trouble 

with the beam! Determine the frequency and nodal pattern for the 1,1 mode for each 
plate. 

 Plot the three frequencies you have calculated against the ratio b , where b is the beam 

width and  is its length. 

 

EXPERIMENTAL HINTS 

Position of shaker (driver, exciter) - you cannot excite a system at a node. On the other hand, 

if you position the driver at an antinode, it may not be able to follow the motion owing to its 
internal constraints. Judicious positioning of the shaker wil l achieve the best results. You may 

move either the plate or the shaker (the plate is easier). 

Position of detector - in both experiments, the detector is a small microphone: this is non-
contacting and is easily moved to determine the nodes and the amplitude of motion. Place 
the microphone over an antinode. 

Position of supports - the supports are made of soft foam so as to minimise their effect on the 
plate in terms of stiffness and mass. Within reason, try and move the supports to the nodal 
positions: this is not easy, especially with the plate. The best rule is to avoid having the 
supports at antinodes. 

Determination of nodes - dry sand is to be used for this purpose. The sand is agitated and will 
move either to a position where the acceleration is less than g, i.e. towards a nodal line, or it 

will fall off the edge. But try also a lightly-held pencil, or your finger nail: these are also 
sensitive to motion. 

Frequency Control - the electronic oscillator can be swept manually over a wide frequency 
range. Start at about 50 Hz and work upwards, watching the oscilloscope screen for resonance.  
 

Note: It is sometimes possible to excite resonance when the drive frequency is only a half of 

the resonant frequency. This is due to non-linearity in the load-deflection characteristics of 
the foam block used to couple the exciter to the beam. The difference in frequency of the two 

signals is obvious on the oscilloscope screen. Avoid this problem by simply returning to twice 
the original frequency when you should find resonance properly. 


