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Abstract 
This paper describes a study on applying data mining techniques to power 
transformer failure prediction. The data set used consisted not only on DGA tests, 
but also in other tests done to the transformer’s insulating oil. This dataset presented 
several challenges, such as highly imbalanced classes (common in failure prediction 
problems), and the temporal nature of the observations. 
To overcome these challenges, several techniques were applied for prediction and 
better understand the dataset. Pre-processing and temporality incorporation in the 
dataset is discussed. For prediction, a 1-class and 2-class SVM, decision trees and 
random forests, as well as a LSTM neural network were applied to the dataset. 
As the prediction performance was low (high false-positive rate), we conducted a 
test to ascertain if the amount of data collected was sufficient. Results indicate that 
the frequency of data collection was not adequate, hinting that the degradation 
period was shorter than the periodicity of data collection. 
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1. Introduction

Asset management plays a central role in ensuring that operational and investment costs are
minimized, and ensuring the quality of products or services (i.e., low amount of defects, no
energy shortages, low delivery times, etc.). Being able to predict failure in physical
assets/equipment can be a powerful tool to aid asset management, as it can help determine
the best time for maintenance actions, minimizing the amount of such actions while improving
the availability of the equipment. This paradigm of using failure predictions to determine
maintenance actions is called predictive (or condition-based) maintenance. In this paper we
focus on predicting failure in power transformers, an equipment critical to electricity
distribution. Failure in power transformer can lead to power shortages, so predicting when it
will happen can help devising maintenance actions that prevent these shortages from
happening. We use data that is already collected for safety inspection and non-predictive
maintenance. This data was collected in order to evaluate the need for a change of isolating
oil due to continuous or sudden degradation. The degradation of the oil may be caused by
malfunctioning of the power transformer. These malfunctions may be a symptom of an
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upcoming failure, and therefore could be useful to predict upcoming failure, allowing 
maintenance to be done preemptively, and avoiding failure. 

There are three tests that are usually conducted on oil samples in order to determine the oil's 
degradation: the dissolved gas analysis (DGA), oil quality (OA) analysis (namely physical 
properties and non-gaseous components), and a furans analysis, which has the objective of 
determining the condition of the paper isolating the core of the transformer through the 
presence of furanic elements in the oil (Wang, Vandermaar, and Srivastava 2002). 

In order to determine the best model to predict failure in the power transformers of this 
dataset, we run tests on several machine learning algorithms, namely decision trees, random 
forests, support vector machines (SVM), and neural networks. 

1.1. Data Description 

The attributes obtained from each test are listed in Table 1. In the 'Global' column are the 
attributes common to all instances. An instance corresponds to a test performed on an oil 
sample collected an oil sample. From the DGA test, in addition to the gases represented by 
their chemical composition, there are three ratios that are currently used by practitioners to 
determine the cause of the failure after it has occurred (Miranda and Castro 2005). These 
ratios are also listed in Table 1. In the 'Oil Quality' column, there are some mechanical and 
chemical measurements obtained. From the furans test, the concentration of the listed 
chemical compounds is registered. Aside the global attributes, all the others are numerical. 

Global DGA Oil Quality Furans 

Serial Number, 
Date, Label 

H2, CH4, C2H4, 
C2H6, C2H2, 

CO, CO2, O2, N2, 
C2H2/C2H4, 

C2H4/H2, 
C2H4/C2H6 

Color, Density, 
Viscosity, 

I.F.T., D.T., A.I, 
H2O, 

TG DELTA, PC1 

I5HMF, I2FOL, 
I2FAL, 

I2ACF, I5MEF 

Table 1: Measurements (attributes) obtained from each test 

The test database used (referred from here onwards as dataset) is comprised by a total of 
15.031 instances (tests) with 30 attributes (variables measured), including the global ones, 
where the label is either 1 or 0. The instance was labeled as 1 if there was a registered failure 
between the date of that instance and the date of the next instance with the same serial 
number, and 0 otherwise. Therefore 1 signifies an upcoming failure, and 0 a normal 
functioning period. 

One of the characteristics of the data set, common to all maintenance problems, is the fact 
that there are many more instances of normal functioning than of failure. In this data set in 
particular, the reason of instances labeled 0 for those labeled 1 is 88 (in other words, there is 
88 times more instances labeled 0 than labeled 1). Therefore, this is a highly imbalanced data 
set, and the algorithms and metrics used have to reflect this characteristic, in order to produce 
relevant results. 

1.2. Outline of the paper 

The remaining of the paper is organized as follows: in section 2 we present related literature; 
in section 3 we will describe the pre-processing; section 4 presents the evaluation procedures 
and a brief description of the algorithms used; in section 5 we present the results of the tests 
and discusses them; section 6 finalizes with the presentation of the main conclusions of this 
paper. 
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2. Related Literature 

In this section some literature on the topic of using data mining (DM) techniques in power 
transformer data and fault prediction is exposed. 

Huang, Huang, and Sun (2012) reviewed different DM approaches to oil-immersed power 
transformer maintenance. It focused more on diagnosis, identifying the cause of failure after 
the failure has occurred, with brief mentions to prognosis of faults. It only considered 
literature focusing on data from DGA tests. 

Wang (2004) developed a 2-part model for fault forecasting in oil-immersed power 
transformers. The first part consisted in using a modified gray model to forecast the gas levels 
in the DGA, while the second part performed diagnosis for the forecasted values, effectively 
predicting faults. The use of a gray model was due to the lack of points (4 points per 
transformer), which may represent an obstacle to the use of traditional forecasting methods, 
such as regression. Although the results are positive, some questions remain as if this method 
is the best when more information is available. 

Fei et al. (2009) developed a support vector machine (SVM) to forecast dissolved gas levels, 
optimizing its parameters using particle swarm optimization (PSO). The justification of using a 
PSO to optimize SVM parameters is due to being time efficient while being easier to operate 
than genetic algorithms (GA). The selected Kernel was RBF, and an SVM regression model was 
developed for each gas. Data set contained daily measurements. It compared its performance 
with a gray model and an artificial neural network (ANN), achieving better results than those. 

Trappey et al. (2015) developed a system that focuses on real-time monitoring of key 
parameters and uses DM to detect transformers' potential failure under various operating 
conditions. The system consisted in a PCA for dimensionality reduction followed by a feed-
forward ANN trained with back-propagation. It only uses data from DGA, and tries to predict 
the status of a power transformer in "Normal", "Waiting Acknowledgment" and "Abnormal". 
The data set had 500 points, which in this case represent the last measurements of a given 
transformer (in other words, each point corresponds to a different transformer). Therefore, it 
does not consider the data as a time series. Also, the data set is balanced between the 3 
possible status. It performs an 80-20 split evaluation. 

Wang (2004) and Fei et al. (2009) focus on predicting the continuous gas levels, and then 
making a discrete prediction about failure. Trappey et al. (2015) discretizes the condition of 
the power transformer. The last paper does not consider the temporality of the data. All the 
reviewed papers focus only on the DGA analysis. Also, none of them makes reference to the 
imbalanced nature of the data, as they balance the data set beforehand. 

This paper adds to the literature as it uses more tests than the DGA analysis to predict failure 
in the power transformers. Also, it deals explicitly with the imbalanced nature of the data set, 
by using weights in the observations during the training of the algorithms. It also considers 
the temporality of the data by considering values of the attributes from previous observations. 

3. Pre-Processing 

One important characteristic of this problem is that the tests conducted on oil samples were 
not done all at the same time. Some instances have only the values of DGA test, while others 
just the oil quality test. This led to a large amount of missing values, that made the utilization 
of the raw data impossible in some algorithms. Therefore, a pre-processing algorithm was 
considered in order to eliminate all missing values (see Figure 1). In the data set used, all 
transformers were identified with a serial number. In order to ease the pre-processing of the 
algorithms, the data set was first sorted in order by the serial number first, and then sorted 
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by date. Then the algorithm in Figure 1 was implemented. A brief description of this algorithm 
is that when it detects a missing value, it checks if there is a value from a previous observation 
of the same transformer, and if there is the missing value is replaced by that value. The 
intuition behind this algorithm stems from the assumption that, given the lag between tests, 
in the absence of information of the value at that time, the last known value is the best 
estimation. In other words, it assumes that the amount of tests of all types is similar. Although 
this was true for the DGA and oil quality (OA) tests, the furans tests were rarer than the other 
two (DGA had 13.335 tests, OA 12.963 and furans 8.074). This caused a very large amount of 
instances to be eliminated, possibly compromising the performance of algorithms that used 
this data. After validation from expert practitioners, it was decided to eliminate the attributes 
related with the furans test, as they compromised results. 

 
Figure 1: Pre-processing algorithm used 

From this process, the data set was reduced from 15.031 instances with 30 attributes, to 9627 
instances with 25 attributes. There is a large reduction due to some power transformers only 
having one or two registered measurements, and/or only from one test. 

3.1. Standardization 

In addition to the process already mentioned, standardization of the data set was conducted 
in order to improve the speed and effectiveness of the data mining algorithms. The 

standardization formula used was the Z-score, 𝑥𝑛𝑒𝑤 =
𝑥−𝜇

𝜎
, in order to prevent outliers from 

turning normal data into very small values. Mean and standard deviation are obtained from 
the data set. 

3.2. Adding Temporality 

In order to capture the temporal nature of the data, we opted to add attributes to the data 
corresponding to previous values of the collected values. In other words, if we select a time 
lag of 1 (i.e., we consider that the previous observation’s value and the current observation’s 
value are relevant), we add an attribute (e.g. H2_1) for each original attribute (e.g. H2), which 
corresponds to the value of the original attribute in the previous observation. Several time 
lags were considered. However, adding temporality this way leads to a reduction in the 
number of usable instances, as for the first n instances of each transformer (n equal to time 
lag) there are not n previous observations. As such, not very high time lags were considered 
(maximum of 6). 

4. Algorithms Used and Performance Metrics 

In this section it is presented a short description of the algorithms used in the exploratory 
analysis. The results of each of the algorithms described are in section 5. 
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4.1. Evaluation Metrics and Methods 

Given the imbalance between the classes in the data set, it was necessary to use measures 
able to capture what is desired from the algorithms, leading to meaningful results. 

Using accuracy (Equation 1), in a context where the data in very imbalanced will simply lead 
the used algorithms to assign all instances to the majority class, as that ensures that the fewest 
instances are misclassified, which are all the ones from the minority class, precisely what 
needs to be predicted. 

It was desired to predict as many failures as we could, while not allowing the number of false 
positives to be very high. For this reason, the selected metrics were recall and false-positive 
(FP) rate (see Equations 2 and 3, respectively). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (2) 

𝐹𝑃 𝑟𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (3) 

Recall reflects how many failures the algorithm was able to detect from all the failures that 
occurred. FP rate reflects the amount of instances classified as leading to failure that were 
normal, relatively to all normal instances. The objective is to maximize recall while minimizing 
FP rate. Another metric, related to the two above is the F1 metric (Equation 4), which 
establishes a compromise between the two, and is used as an auxiliary metric when optimizing 
some algorithms. 

𝐹1 =  
2 ∗ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ∗ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (4) 

In addition to the use of this metrics, the evaluation process will use an adaptation of 10-fold 
cross validation to assess the performance of the algorithms. This modification is motivated 
by the fact that the instances can be grouped by serial number to create a time series, or 
sequence, and a standard, out-of-the-box, cross validation could "break" these sequences, 
compromising the integrity of the data. Therefore, instead of selecting 10% of the instances, 
as in standard 10-fold cross validation, it will be considered 10% of the serial numbers, 
ensuring that no sequence is "broken". 

4.2. Decision Trees 

Decision trees are learning methods that do not require an assumption of the population 
distribution, and are as such considered to be non-parametric. They can be used for both 
classification and regression. Their basic functioning consists in a divide-and-conquer 
approach, where a more complex problem is divided in simpler problems, and this strategy is 
applied recursively (Gama et al. 2012), creating a tree-like structure of hierarchical decisions 
(hence the name). 

Structurally, a decision tree is composed by nodes and leaves, where in each node there is a 
decision based on one of the attributes and a threshold, and in the leaves the instances are 
assigned to a class or value. 

The decision tree creation algorithm can be briefly described as, at each iteration, selecting 
the best attribute and the best threshold to divide the data, creating a node that represents 
that decision, followed by the creation of two new leaves that stem from the new node. This 
process is repeated until a stopping criterion is reached, which can be, for example, the purity 
of leaf nodes (how many instances in that leaf node were classified wrong), or the depth of 
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the tree (the length of the longest path from the first node to a leaf). Several criteria can be 
used to decide which attribute to make the split, but the two most common ones are 
information gain/ entropy, and the Gini index. The first one focuses on making the more 
general decisions first, as this gains more information (reduces entropy), while the second one 
is a measure of purity. The two most popular algorithms for decision tree induction are the C 
4.5 (Quinlan 1993) and the CART (Breiman et al. 1984). In this study, the algorithm used will 
be CART due to being able to better deal with outliers and noise (Questier et al. 2005). 

This algorithm has some hyper-parameters that should be optimized in order to improve the 
performance. To do that, a grid search was conducted, as according to Table 2. For optimizing 
these parameters, the first 1000 instances were selected as a tuning subset (while ensuring 
serial number integrity). The tuning was performed using a 10-fold cross validation. 

Criteria Maximum Number of Leaves Maximum Depth 

Gini 
None None 

2 5 

Entropy 
5 10 

10 20 

Table 2: Decision tree grid search space 

One of the main issues that come up after looking at the data is that there are many more 
observations where the model is not supposed to predict a failure (label equal to 0 – 
considered normal behavior by the transformer) than observations immediately preceding a 
failure (label equal to 1). There were around 88 times more observations of normal behavior 
than those with “faulty” behavior. As such, class weights were introduced in order to balance 
the classes and achieve useful results. The formula for the weights of erring a prediction in a 
certain class is inversely proportional to the class frequencies, and is given by Equation 5. The 
number of samples and number of classes is fixed. 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑌) =  
𝑁º 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑁º 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑁º 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑌
 (5) 

The hyper-parameters that were deemed more relevant to tune for this problem were the 
criteria, the maximum number of leaves, and the maximum depth of the tree. The use of 
different criteria can change the approach to the problem and affect the results obtained, and 
as such should be considered in the grid search. The maximum depth of the tree enables us 
to select how complex we wish our decisions to be, as more depth means that more decision 
nodes can be "stacked" on top of each other. The maximum number of leaves represents in 
how many "groups" the data will be divided, with each "group" belonging to a class (note that 
there can be several "groups" with the same class). This parameter allows us to refine how 
precise the results will be, as more leaves will lead to higher purity in each one of them, and 
less leaves will make the leaves more prone to misclassification, but also less prone to noise 
and more capable of generalizing. In both the maximum number of leaves and the maximum 
depth, "None" means that no limit is imposed. The number of possible combinations are 2 ∗
4 ∗ 4 = 32. 

The results of the grid search will be discussed in section 5.1. 

4.3. Support Vector Machines (SVM) 

Support Vector Machine is an optimization based machine learning algorithm that focuses on 
defining the best linear frontier that separates two classes is a data set. It does so by 
considering support vectors, which are the points from both classes closer to the other class, 
and defining a frontier that maximizes the distance to the support vectors from both classes. 
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In order to solve non-linear problems (i.e., that are not linearly separable), a kernel trick is 
used, where the dot product of instances in the original solution space is transformed using a 
kernel function to a space of higher dimension. Common kernels are the linear kernel 
(𝑘(𝑥, 𝑦) = 𝑥𝑇𝑦 + 𝑐), the polynomial kernel (𝑘(𝑥, 𝑦) = (𝑥𝑇𝑦 + 𝑐)𝑑), and the radial basis 
function (RBF) kernel (𝑘(𝑥, 𝑦 = exp (𝑦‖𝑥 − 𝑦‖2)). For a tutorial of SVM, refer to Cristianini and 
Schölkopf (2002). 

As in the decision tree case, a grid search was done in order to optimize the hyper-parameters 
of SVM. The search space can be seen in Table 3. Please note that the degree is only applicable 
when using the polynomial kernel, and the gamma only in the RBF kernel, so we have 5 ∗ 1 +
 5 ∗ 3 +  5 ∗ 3 =  5 ∗ (1 + 3 + 3)  =  35 possible combinations. 

C Kernel Degree Gamma (γ) 

100 Linear 2 0.001 

1000 RBF 3 0.0001 

2500 Polynomial 4 0.00001 

5000    

Table 3: 2-Class SVM grid search space 

The kernel functions used were already explained. The degree represents the degree of the 
polynomial kernel (d). Gamma can be defined intuitively as how far the influence of a single 
training example reaches, as it can be seen as the inverse of the radius of influence, with lower 
values meaning that an instance can influence many others. The C parameter represents the 
trade-off between misclassifying instances against the simplicity of the decision frontier. 
Smaller values of C mean a smoother frontier, and higher values lead to a more "over-fitting" 
frontier. In addition to this parameters, class weights were balanced the same way as in the 
decision tree case. 

4.4. One-Class SVM - Novelty Detection 

Chawla, Japkowicz, and Kotcz (2004), state that when negative examples vastly outweigh the 
positive ones, one-class learners trained on the positive class alone may lead to improved 
results. SVM has a one-class version for novelty detection, which was tested in this problem, 
training it on the positive samples. This version, instead of finding the best frontier between 
classes, tries to separate all points from the origin of the feature space, and maximizes the 
distance of this frontier to the origin (for more details see Scholkopf et al. (1999)). 

The grid search was done using the same search space, but without the C hyper-parameter, 
for a total of 7 combinations. As it is a one-class algorithm, it does not have class weights. 

4.5. Random Forest (RF) 

Random forests (Breiman 2001) are an ensemble method, that focuses on constructing several 
small decision trees, fitting them to sub-samples of the data set and combining them in order 
to improve performance. Ensemble methods combine several learning algorithms in order to 
improve predictive performance. The results of the several algorithms are combined usually 
with a voting scheme, where the most voted class by the different algorithms is the output of 
the final model. There are several types of ensembles, and random forests are an example of 
bagging/ bootstrapping, where each model is trained on a random subset, and each model 
has an equal weight when voting. 

The hyper-parameters used for random forests are the same as decision trees, as these are 
the base unit of this method. The only additions are the number of trees to use, and the 
maximum number of features to consider when looking for the best split. The number of 
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features to consider was set to the square root of the total number of features. Table 4 shows 
the space of the grid search. This led to 2 ∗ 4 ∗ 4 ∗ 4 = 128 combinations. 

Criteria Number of Trees Maximum Number of Leaves Maximum Depth 

Gini 
5 None None 

10 2 5 

Entropy 
20 5 10 

50 10 20 

Table 4: Random forest grid search space 

4.6. Neural Networks – Long Short-Term Memory (LSTM) 

Artificial Neural Networks (ANN) are a machine learning/ artificial intelligence approach to 
model complex functions, for both classification and regression. They consist on using several 
smaller units, called neurons, that comprise a linear combination of inputs, followed by a non-
linear activation function. These units are organized in layers and interconnected, forming a 
network with the capability of modeling highly complex functions. In this paper, we use a 
version of neural networks that is capable of handling recurrence, i.e., capable of handling 
temporal/ sequential data, called Long Short-Term Memory (LSTM) networks. It is inherently 
able to handle high time gaps efficiently, by using a memory block comprised a central unit 
called cell, and other units to control the flow of the error called gates. The original 
formulation was in Hochreiter and Schmidhuber (1997). For further information on the more 
modern additions to LSTM, consider reading Greff et al. (2015). 

The testing performed with the neural networks was a more complex procedure, as it not only 
involved optimizing hyper-parameters, but also the structure of the neural network (in this 
case the number of layers the network should have). In addition, a test on the sensitivity of 
the model to time lag was performed to see if the model could benefit of increased time lag 
when compared to the other models. These steps were done sequentially, i.e., first an 
optimization of the hyper parameters was performed using a grid search, then an optimization 
of the number of layers (using the best hyper parameters), and then a study on the influence 
of time lag (using the best hyper parameters and number of layers). 

A LSTM neural network has as hyper parameters the batch size, which determines after how 
many instances the weights of the connections will be updated, the learning rate, which 
determines how much the weight will change at the end of each batch, and the number of 
epochs, i.e., the number of times the network is trained over the data set. The optimization 
algorithm used was the Adam algorithm (Kingma and Ba 2015). 

As such, a grid search was conducted with the following parameter list in Table 5. 

Batch Size Learning Rate Neurons Epochs 

20 10−1 1 50 

50 10−2 10 100 

100 10−3 20 200 

200 10−4 50 300 

 10−5   

Table 5: LSTM grid search parameter list 

The LSTM algorithm was implemented in Python using the Keras framework (Chollet 2015). A 
5-fold cross validation performed. A time lag of 2 was chosen, based on previous experiments. 
The loss function chosen was binary cross-entropy, and is defined in Equation 6, where 
𝑦𝑖represents the target/true values of the label (either 0 or 1), and �̂�𝑖 represents the predicted 
values. 
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∑ 𝑦𝑖 log(�̂�𝑖) +

𝑁

𝑖

(1 − 𝑦𝑖)log (1 − �̂�𝑖) (6) 

Then, in order to see if increasing the complexity of the machine learning algorithm would 
improve performance, tests using the parameters that performed the best in the first grid 
search were used with an increasing number of layers, from 2 to 10. 

After that, in order to confirm if this more complex algorithm could make use of an increased 
time lag, tests on different time lags, using the network with the best performance, were 
done. The time-lag varied between 3 and 6. 

Results of LSTM tests are presented in section 5.2. 

5. Results 

5.1. Tree-based and SVM-based algorithms 

The tests consisted in using the adapted 10-fold cross validation (see section 4.1.) in each of 
the selected algorithms with the optimal hyper-parameters. 

In addition to testing the different algorithms, they were also tested on several time lags, more 
precisely between 0 and 3, which represent either no time lag (the original data set), or the 
addition of the previous 3 values for each attribute. Note that increasing the time lag leads to 
a decrease in the number of available instances, as there is a need to eliminate missing values 
which will originate in the first instances of each transformer (same serial number). 

Another test that was performed was to differ the scoring function when doing the grid 
searches, between the F1 metric, and the recall metric. F1 should be a more balanced metric, 
while recall should force more misclassification errors to increase the number of positive 
instances correctly classified. Results of the parameter optimization can be seen in Table 6. 

The tests results can be seen in Table 7. 

 

 
 Decision Trees SVM 2-Class SVM 1-Class Random Forests 

 

Time Lag\ 
Parameters 

Criteria 
Max. 

Leaves 
Max. 
Depth 

C Kernel 
Degree/
Gamma 

Kernel 
Degree/
Gamma 

Nº of 
Trees 

Criteria 
Max. 

Leaves 
Max. 
Depth 

F1 

0 Entropy None None 5000 
Polyno

mial 
3 Linear - 10 Entropy 5 100 

1 Gini None None 100 
Polyno

mial 
3 Linear - 10 Gini 5 50 

2 Gini 5 None 100 
Polyno

mial 
4 Linear - 5 Entropy 5 100 

3 Gini 2 None 100 RBF 0,001 Linear - 5 Entropy 5 None 

Recall 

0 Entropy 2 None 100 RBF 0,00001 Linear - 10 Gini 2 20 

1 Entropy 2 None 100 RBF 0,00001 Linear - 5 Gini 2 100 

2 Entropy 2 None 100 RBF 0,00001 Linear - 5 Entropy 2 None 

3 Entropy 2 None 100 RBF 0,00001 Linear - 5 Entropy 2 20 

Table 6: Grid search results by scoring metric, algorithm used and time lag. Best 
parameters for each type of model, time lag and optimization criteria are presented 
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  Time Lag 

 
Parameter 
Selection/C

riteria 

0 1 2 3 

Error 
Recal

l 
FP-
rate 

Error 
Reca

ll 
FP-
rate 

Error 
Reca

ll 
FP-
rate 

Error 
Reca

ll 
FP-
rate 

Decision 
Tree 

F1 0,02 0,03 0,01 0,01 0,00 0,00 0,37 0,70 0,37 0,60 0,73 0,60 

Recall 0,52 0,71 0,52 0,65 0,86 0,66 0,48 0,86 0,48 0,63 0,70 0,64 

SVM 1 
F1 0,53 0,66 0,53 0,27 0,24 0,26 0,66 0,80 0,66 0,49 0,51 0,49 

Recall 0,53 0,66 0,53 0,27 0,24 0,26 0,66 0,80 0,66 0,49 0,51 0,49 

SVM 2 
F1 0,23 0,27 0,22 0,10 0,14 0,09 0,03 0,07 0,02 0,11 0,15 0,10 

Recall 0,44 0,62 0,44 0,33 0,68 0,33 0,35 0,77 0,35 0,29 0,66 0,29 

Random 
Forests 

F1 0,20 0,34 0,19 0,16 0,37 0,16 0,21 0,41 0,20 0,17 0,30 0,17 

Recall 0,23 0,42 0,23 0,34 0,56 0,34 0,35 0,63 0,35 0,38 0,45 0,38 

Table 7: Exploratory analysis results. Evaluation metrics used are misclassification error, 
recall and false positive rate. The scoring criteria is related with the parameters in Table 6 

5.1.1. Discussion 

While evaluating these results, due to practical concerns, an algorithm is considered 
"successful" when its recall is above 0.60, and its FP-rate is below 0.4. Taking this into 
consideration, and consulting Table 6, we can see that the "successful" cases are decision trees 
when optimized to F1 and with time-lag 2, random forest when optimized to recall and time 
lag 2, and SVM 2-class, for time lags 1, 2 and 3, when optimized to recall. The greatest 
difference between FP-rate and recall is achieved by SVM 2-class with time lag 2. It can be 
argued that time lag 2 achieves the best results. The fact that result worsen from time lag 2 to 
3 may be caused by the reduction in the number of observations that occurs when time lag is 
increased (see section 3.2). 

When it comes to decision trees or random forest, it is unclear which is the best criteria (Gini 
or entropy), but it seems evident that limiting the number of leaves has a positive effect on 
performance, especially in recall, while maximum depth should not be controlled. This 
indicates that there is a need for complex decisions (high depth) and resistance to noise 
(limited number of leaves). 

When analyzing the SVM algorithms, the 1-Class SVM was outperformed by all the other 
algorithms. It was, however, the most stable of all algorithms, with the same results when 
optimizing either F1 or recall. The 2-Class SVM was the most successful algorithms, which may 
come from its ability to model complex decision boundaries between two groups. In terms of 
hyper-parameters, the RBF kernel was the most successful, with a C value of 100 and low 
gamma (10-5). 

5.2. LSTM 

5.2.1. Parameter Grid Search 

For the sake of brevity, results will be presented as graphics representing the trends of the 
difference between recall and FP-rate given the different values of the parameters. In the 
following Figures (2, 3, 4, 5), each parameter is represented separately, with the difference 
over the other parameters averaged. 
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Figure 2: Difference between recall and FP-rate in vertical axis 

and batch size in horizontal axis 

 
Figure 3: Difference between recall and FP-rate in vertical axis 

𝑙𝑜𝑔10(𝑙𝑒𝑟𝑎𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) in horizontal axis 

 
Figure 4: Difference between recall and FP-rate in vertical axis 

and number of neurons in horizontal axis 

 
Figure 5: Difference between recall and FP-rate in vertical axis 

and number of epochs in horizontal axis 

It can be seen that batch size and number of epochs had little impact in the performance of 
the model, with batch size 50 and epochs equal to 200 having very slightly better results. In 
terms of the number of neurons, 1 neuron had a greater difference in average than more 
neurons. Learning rate was more unstable, having the greatest average difference for 10−4. 
These trends may not be very informative due to the lack of points, so conclusions should be 
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drawn carefully (computing more points would have been very time consuming). Also, 
combination effects between parameters have to be studied more carefully (an exploratory 
analysis of the combination has been conducted, but no visible effects were noted). 

Despite all the trends, the best result from a combination of parameters came from batch size 
of 50, a learning rate of 10−5, 50 neurons in the layer, and 200 epochs, with the maximum 
difference of 0.28, from a recall of 0.54 and a FP-rate of 0.26. As such, these were the 
parameters selected for the tests involving increasing the number of layers. 

5.2.2. Layers Tests 

Results from increasing the number of layers are presented in Table 8. 

Layers Recall FP-Rate Error Times (seconds) Difference 

2 0,490 0,251 0,254 690,352 0,239 

3 0,455 0,245 0,248 1054,709 0,210 

4 0,363 0,218 0,222 1427,059 0,145 

5 0,373 0,227 0,231 1777,480 0,146 

6 0,390 0,232 0,236 1880,026 0,157 

7 0,346 0,241 0,245 2294,013 0,105 

8 0,348 0,238 0,243 2651,101 0,110 

9 0,298 0,231 0,236 2757,684 0,067 

10 0,330 0,211 0,216 3229,153 0,119 

Table 8: Results from the layer addition tests. Batch size = 50, learning rate = 10-5, 
50 neurons per layer and 200 epochs 

It can be seen that adding more layers to the model, making it more complex will result in 
worsening the performance, while also increasing the running time of the training. As such, 
time lag tests will be done with a one-layered network, with the same parameters. 

5.2.3. Layers Tests 

Results from the time lag tests are presented in Table 9. 

Time Lag Recall FP-Rate Error Times (seconds) Difference 

3 0,479 0,186 0,189 347 0,293 

4 0,452 0,075 0,078 332 0,377 

5 0,300 0,017 0,016 297 0,283 

6 0,000 0,004 0,005 258 -0,004 

Table 9: Results from time lag tests. Batch size = 50, learning rate = 10-5, 50 
neurons, one layer and 200 epochs 

From these results we can see that the LSTM network makes better use of more past 
information, since increasing the time lag from 2 to 4 actually improves performance in the 
LSTM case, while for the other classifiers, using a time lag greater than 2 led to worse 
performance. However, this improvement was not enough to surpass the other best classifier 
(the 2-class SVM - difference of 0.42). 

5.2.4. Discussion 

From these results, it was possible to conclude that trying to solve the problem using a more 
complex model, did not lead to an improved performance. The best performance obtained 
remained the one from the 2-class SVM, with a recall of 0.77, and a FP-rate of 0.35, which 
corresponds to a difference of 0.42. This led to the conclusion that the main issued was 
effectively with the data and not the method used. From this conclusion, two possibilities 
remained: either the data was not adequate, i.e., the attributes had nothing to do with the 
problem (in other words, the isolating oil degradation is not related with upcoming failures in 
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the machine, and could only be used for diagnosis), or the data was not collected at a right 
periodicity (i.e., tests have to be more frequent in order to obtain meaningful results). In order 
to verify which of these possibilities were true, a validation procedure on the periodicity of 
the data collection was devised, as will be explained in the next section. 

5.3. Data Collection Periodicity Validation 

The time between tests was around one year on average. However, the degradation that 
indicates an upcoming failure may only start to appear in a shorter period of time (e.g. a 
month). In order to test if the data collection periodicity was frequent enough, a validation 
procedure was devised. 

Please remember that observations were labeled as 0 or 1 whether there was a failure 
between that observation and the next one. This does not reflect how much time between 
the current observation (the one labeled) and the actual failure occurred. We only know that 
is at most one year. Also, a failure can be detected between observations, so we have a specific 
date for the occurrence of the failure. Therefore, it should be possible to verify if this time 
lapse between the labeled observation and the actual failure influences the performance of 
the predictor. 

The validation procedure consisted in using the best predictor possible to make predictions, 
and compare the time lapse between the prediction (made on each observation), and the 
failure. The predictor selected was a 2-class SVM with and RBF kernel and a gamma of 10-5 
and a C of 100, trained on the whole data set. This will lead to an optimistic evaluation of the 
model, but what we are trying to do is to have the best possible predictions a model could 
theoretically make in the data, and see the effect of the time lapse on these predictions.  

From this procedure, the average number of days between the prediction and the failure was 
higher for failures the predictor failed to detect (as it can be seen in Table 10). 

True Value Predicted Average Time Lapse (days) Std. Deviation 

1 0 236,455 160,734 

1 1 143,583 121,041 

Table 10: Results from the data collection periodicity validation procedure 

The performance of the optimistic model resulted in a recall of 0.85 and a FP-rate of 0.36. 
Given the fact that the average time lapse is higher for situations where the model fails to 
predict, and that the high level of recall and FP-rate, it can be concluded that the poor 
performance of the model comes from the periodicity of the data. However, the impact on 
performance does not manifest itself so much on the failure to predict, but in the amount of 
false positives the model led to. It appears that the long time lapses between the time the 
model had to make a prediction and the time the failures occurred, led the model to "strain" 
itself trying to predict too far into the future. 

6. Conclusions and Future Work 

In this paper, we tried to predict failure in power transformers. Doing so would provide a 
useful tool to improve maintenance policies. We tested several machine learning algorithms 
to a data set of insulating oil tests in order to find the best one for predicting failure. The data 
set, common to many maintenance problems, was highly imbalanced between situations with 
normal and faulty behavior. The fact that the data set was highly imbalance in conjunction 
with the fact that the observations had a temporal nature was a challenge, as common 
procedures to handle imbalanced data (e.g. under sampling and oversampling) do not take 
into consideration related observations, and as such we used weights in common data mining 
algorithms to deal with the imbalanced nature of the data. 
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The predictive model with the best performance was a SVM for two classes, which achieved a 
performance of recall equal to 77% and a false-positive rate of 35%. These results were not 
satisfactory since, given the high imbalance, as it corresponds to having around 77 true 
predictions for around 3000 false positives. This hinted that the degradation period that 
precedes the failure was shorter than the periodicity of data collection. In order to verify this, 
a test was performed, which indicates that the hypotheses should be true. 

On a more technical level, adding more time lag after the 2 period threshold worsened 
performance for most classifiers, and more than a time lag of 4 also worsened performance 
for the LSTM case (which can make better use of past data). Trying more complex models, 
such as networks with more layers, also did not improve performance. Most likely, the LSTM 
network did not have a better performance because of the low frequency the data was 
collected, which not only affected the prediction of the failures, it also eliminated the need to 
use information from long time lags, decreasing the usefulness of the LSTM. Please note that 
time lags for the model are measured in number of instances and not real time. Finally, it was 
concluded that tests have to be made more frequently in order to enable the model to have 
a clearer picture of when and how the failure mode starts to show signals of occurring. 

Compared to the literature reviewed, the data used in this paper, although it has more 
observations than in the other papers (approximately 9000 compared to 500), the data was 
collected less frequently. In other words, the time horizon of data collection was larger and 
more transformers were under analysis, which lead to increased number of observations, 
“hiding” the frequency that the observations were done (1 year). We can conclude that more 
than having a large number of observations, it is more relevant to ensure that they are 
collected in an adequate frequency when compared to the degradation period. 

In terms of future work around this topic, an obvious one would be to repeat these tests but 
with a data set with more frequent tests. Another approach that has not been tested would 
be to consider alternative ways of incorporating temporality in the data, for example using 
time series data mining techniques to represent the data from each transformer as a 
sequence. This, however, may still be affected by the frequency of data collection. 
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